如图 过以ab为直径的半圆,求角DOE的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:57:39
设AB中点为O,圆与AC交于E,连接OE,则S阴影=S正方形面积/2-(S扇形AOE-S三角形AOE)=20*20/2-(π(20/2)²/4-(20/2)*(20/2)/2=200-(25
两个内圆锥的底面是CD旋转得来的,而圆锥侧面积=πLR(L是圆锥的侧长,R是圆锥半径,即CD),你自己代入一下就知道了.
二分之一的正方形面积把两个半圆的重叠部分割成两个弓形,补到阴影部分的凹面,即可构成一个三角形.\x0d而这个三角形的面积就是正方形ABCD的面积的一半.
①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A
(1)当C点在A、O之间时,如图甲.由勾股定理OC=R2−(32R)2=12R,故AC=R-12R=12R;(2)当C点在B、O之间时,如图乙.由勾股定理知OC=R2−(32R)2=12R,故AC=R
MN=2分之AB时区域面积S值最大又因为角AMB为直径所对的圆周角等于90度所以S=4分之1小圆S最大值为4分之π
∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(c
大圆半径为2则小圆M半径为1C为OB中点则OC=OM=1CD为圆M的切线且MD=MC/2则直角△MDC中∠DMC=60则S△MDC=(根号3)/2在三角形ADM中,AM=DM外角DMC=60则∠DAM
设圆的半径为R,圆心角为α,(弧度制)则弧长L=αR扇形面积=LR/2=αR²/2
∵M、C分别为OA、OB的中点得MC=1/2AB=2,MD=1,∵MD⊥CD,∴CD=√(MC^2-MD^2)=√3,cos∠DMC=MD/MC=1/2,∴∠DMC=60°,∠DCA=30
大圆半径为2则小圆M半径为1C为OB中点则OC=OM=1CD为圆M的切线且MD=MC/2则直角△MDC中∠DMC=60则S△MDC=(根号3)/2在三角形ADM中,AM=DM外角DMC=60则∠DAM
证明:设这里的切线交AC于F,并设半圆的圆心是O依题意,EF垂直于ACOE也垂直于AC(切线)所以,EF平行于OE因为O是BC的中点所以OE是三角形ABC的中位线所以OE=1/2ACOE=1/2BC(
BC=AC.证明:连接OE.∵EF是圆的切线,∴OE⊥EF,又∵EF⊥AC∴OE∥AC,∵OC=OB,∴OE是△ABC的中位线,∴AC=2OE,又∵BC=2OE,∴BC=AC.
一个弓形面积是由一个半径为2的1/4圆减去一个腰长为2的等腰直角三角形面积阴影面积=4(π*2^2/4-2*2/2)=4π-8(中学答案)=4.56(小学答案)
1.根据题目圆的直(半)径成等比数列d1=1d2=2d3=4d4=8……dn=2^(n-1)S半=S圆/2=π[2^(n-1)/2]²/2=2^(2n-5)π
二分之一圆的面积(π*AM的平方/2)减去(四分之一圆-三角形)面积=阴影面积:
∴∠DF=∠FE.∴.  
2002武汉的如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于点N,