如图(1)等边三角形abc边长为8,ad是角abc的角平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:25:37
如图(1)等边三角形abc边长为8,ad是角abc的角平分线
如图,边长为三分之二的等边三角形ABC放在数轴上

C表示的数是:2/3+2/3x3=8/3,又可以读作二又三分之二

如图,三角形abc是边长为3的等边三角形.

延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN

如图,圆O的内接圆等边三角形ABC的边长为2倍根号3

没看到图啊,题目也不完整再问:P是劣弧AC上的一点(动点),AP,BC的延长线交于一点D求(1)圆的半径再答:过A做BC垂线交BC于E则BE=根号3三角形OBE中角OBE=30度,BE=根号3所以半径

如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:

∵DE是它的中位线,∴DE=12AB=1,故(1)正确,∴DE∥AB,∴△CDE∽△CAB,故(3)正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故(4)正确,∵等边三角形的高=边长×sin

如图(1)△ABC,△CDE都是等边三角形.

没图只解第一问因△ABC△CDE为等边△所以△BCD和△ACB中AC=BC,DC=EC又∠ACB=∠ACD=∠DCE=60所以∠BCD=∠ACE=120所以△BCD≌△ACBAE=BD

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,已知等边三角形ABC的边长为1,按图中所示的规律,用2012个这样的三角形拼接而成的四边形周长是

2014当只有一个三角时,边数为3,当有两个时,边数为4,当有三个时,边数为5,当有四个时,边数为6,得出当有N个三角时,边数为N+2,所以,当有2012个这样的三角,边数为2014

如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为(  )

连接OA,并作OD⊥AB于D,则∠OAD=30°,OA=2,∴AD=OA•cos30°=3,∴AB=23.故选C.

如图,已知圆o是边长为2的等边三角形ABC的内切圆,则圆O的面积

显然圆的半径=1/tan30=根号3于是面积为3π再问:说仔细点再答:⊙﹏⊙b汗开始比错了是π/3角BAC=60度因为等边三角形角EAB=30度且DE垂直AD(DE为内切圆半径)D为AB中点所以在直角

如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向

解题思路:(1)由平移的性质可知BE=2BC=6,DE=AC=3,故可得出BD⊥DE,由∠E=∠ACB=60°可知AC∥DE,故可得出结论;(2)在Rt△BDE中利用勾股定理即可得出BD的长.解题过程

如图,在等边三角形ABC中

解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced

如图,△ABC是等边三角形(1)用尺规做出△ABC的外接圆圆o,保留作图痕迹,不写做法(2)若△ABC的边长为6

三角形外接圆圆心是三边的垂直平分线交点,所以作其任意两边垂直平分线,这两条垂直平分线交点O,再以点O为圆心,OA为半径作圆,即可得到外接圆.第二问直接用正弦定理即可求解,这应该是初三的题目,我就用初三

如图,已知,等边三角形ABC的边长为1,求它的面积

过顶点作三角形的垂线,得到两个有一个角为60度的直角三角形.因为是等边三角形所以此垂线也是底边的平分线,因此直角三角形的一条直角边为0.5,斜边为1,可以得出另一条直角边也就是等边三角形的高线为四分之

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

如图1△ABC△CDE都是等边三角形

1)见左图∵ AC=BC,CE=CD,∠ACE=∠BCD=60°∴△ACE≌△BCD∴AE=BD 2)见右图,旋转角度后,∠ACE=∠ACB+∠ECE=∠ECE+60°∠BCD=∠

如图,等边三角形ABC的边长是1,点D,E,F分别在AB,BC,CA上,且△DEF是等边三角形.设AD=X,△DEF的面

由⊿ABC和⊿DEF都是等边三角形可知⊿ADF≌⊿BED≌⊿CFE,⊿ADF中,AD==x,AF=1-x,∠A=60°,据余弦定理DF²=X²+(1-x)²-2x(1-x

如图,等边三角形ABC内接于圆O,边长为4cm,求图中阴影部分的面积

三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3