如图, 加倍中线法 求证:CD =2CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:22:26
如图, 加倍中线法 求证:CD =2CE
已知如图AB=AC=BE,CD为三角形ABC中边上的中线,求证CD=二分之一CE

∵AC=AB+BE=½AE,故∠E=30º,∠ACE=90º{30º所对直角边等于斜边一半之逆定理},BC=AC{直角△斜边的中线等于斜边一半},△ABC等边;

已知:如图,在Rt△ABC中,EF是中位线,CD是斜线AB上的中线,求证:EF=CD

因为EF是中位线所以EF=二分之一的AB因为△ABC是Rt△且CD是斜线AB上的中线所以CD=二分之一的AB所以EF=CD

如图,在Rt△ABC中,EF是中位线,CD斜边AB上的中线,求证:EF=CD

证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】

如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.

证明:延长CE到F,使EF=CE,连接FB.∵CE是△ABC的中线,∴AE=EB,又∵∠AEC=∠BEF,∴△AEC≌△BEF,(SAS)∴∠A=∠EBF,AC=FB.∵AB=AC,∴∠ABC=∠AC

如图,已知CD是△ABC的中线,CN=MN,求证:AM=CB.

证明:过A作CB平行线,交CD延长线于F∵CN=MN∴∠1=∠3=∠4(等边对等角、对顶角)又 AF//CB∴∠1=∠F(内错角相等)∴∠4=∠F∴AM=AF(等角对等边)∵CD是△ABC的

如图,已知CD是△ABC的中线,CN=MN,求证:AM=BC

过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证

如图CE,CB分别为△ABC,△ADC的中线,AB=AC,∠ABC=∠ACB,求证CD=2CE

证明:延长CE到F,使EF=CE,连接FB.∵CE是△ABC的中线,∴AE=EB,又∵∠AEC=∠BEF,∴△AEC≌△BEF,(SAS)∴∠A=∠EBF,AC=FB.∵AB=AC,∴∠ABC=∠AC

已知:如图,在Rt△ABC中,∠ACB=90°,CD是中线,CE是高,且AC²=3BC².求证:CD

AC²+BC²=4BC²因为∠ABC=90°所以AB²=(2BC)²AB=2BC所以∠A=30°∠B=60°因为CD是中线所以CD=1/2AB=AD所

如图,CB、CD分别是钝角△AEC和锐角△ABC中线,且AC=AB,∠ACB=∠ABC.求证CE=2CD.

延长CD至F,使DF=CD,连接AF,AD=BD,CD=DF,∠ADF=∠BDC,∴⊿ADF≌⊿BDC,∴AF=BC,AF∥BC∴∠CAF+∠ACB=180°,∵∠ACB=∠ABC,∠ABC+∠CBE

有三角形中线时常延长加倍中线构造全等三角形,如图AD为三角形abc的中线,求证ab加ac大于2ad

通过平行全等,再答:发图给你再问:CE是自己补的再答:因为BD等于DC,AD等于DE,且角ADB=角CDE。所以三角形ABD全等三角形CDE。所以CE等于AB。在三角形ACE中,根据两边之和大于第三边

已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,CE是AB边上的中线,AC=AE,求证,BC=2CD

∵CE是AB边上的中线∴CE=1/2AB=AE∵AC=AE∴AC=AE=CE∴△ACE是等边三角形∴∠A=60°∵∠ACB=90°∴∠B=90°-60°=30°∵CD⊥AB于D∴∠CEB=90°∴△B

如图,在△ABC中,CD是中线,AC²+BC²=4CD²,求证:△ABC是直角三角形.

证明:在CD的延长线上取点E,使DE=CD∵CD是中线∴AD=BD∵DE=CD,∠ADC=∠BDE∴△ADC≌△BDE(SAS)∴BE=AC,∠E=∠ACD∴AC∥BE∵AC²+BC

如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.

证明:过B作BF∥AC交CE的延长线于F,∵CE是中线,BF∥AC,∴AE=BE,∠A=∠ABF,∠ACE=∠F,在△ACE和△BFE中,∠A=∠ABF∠ACE=∠FAE=BE,∴△ACE≌△BFE(

如图,cd是三角形abc的中线,cn=mn,求证am=cb

作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=

已知,如图,cd是三角形abc的中线,ae=2ec,df平行ac,求证,1:df=三分之一ac,2:be平分cd

【纠正DF=½AC】证明:∵AD=BD,DF//AC∴DF是⊿ABC的中位线∴DF=½AC取AE中点G,连接DG∵AG=EG,AD=DB∴DG是⊿ABE的中位线∴DG//BE∵CE

如图,AM是三角形ABC的中线,角DAM=角BAM,CD//AB.求证:AB=AD+CD

方法一:延长CD交AM的延长线于E.∵AB∥CE,∴∠ABM=∠ECM、∠BAM=∠CEM,又BM=CM,∴△ABM≌△ECM,∴AB=EC.∵AB∥ED,∴∠DEA=∠BAE,又∠BAE=∠DAE,

如图 在Rt△ABC中 ∠ACB=90° 中线AE CD 交于点O AB=4 求证 AO:OE=2

连接DE,DE即为中位线,DE与AC平行,△ACO与△EDO相似,AO:OE=AC:ED=2

如图,在三角形ABC中,CD是中线,AC²+BC²=4CD²,求证:三角形ABC是直角三角

延长CD到E使DE=CD,连接AE可用SAS证明三角形AED与三角形BCD全等,即AE=BC∵AC^2+BC^2=4CD^2∴AC²+AE²=(2DC)²∴三角形AEC为