如图,ab,cd是圆o的两条平行弦,弧ac与弧bd相等吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:43:48
如图,ab,cd是圆o的两条平行弦,弧ac与弧bd相等吗
如图,AB,CD是圆o的两条弦且AB//CD,MN垂直平分AB,求证:MN垂直平分CD

证明:设MN⊥AB,MN交圆O于M,N点则MN必过圆心【垂直平分弦的直径必过圆心】∴MN是直径∵AB//CD∴MN⊥CD∴MN垂直平分CD【垂直于弦的直径平分弦】

如图,已知AB,CD是圆O的两条弦,且AB=CD

∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

如图,AB是圆O的弦,CD切圆O于点M,且CD‖AB,求证AM=BM

连接OM,OM交AB于N,因为CD切圆于点M,所以,CD⊥OM,因为CD‖AB,所以,AB⊥OM,那么△MNA和三角形MNB全等,所以AM=BM

已知如图,AB、CE是圆O的直径,CD是圆O的弦,CD‖AB,求证弧EB=弧AC=弧BD

连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD

如图,ab,cd是圆o的直径,弦ce‖ab,b是弧de的中点么

∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,ab是圆o的直径,弦cd⊥ab于h,p是ab延长线上一点

∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧

如图,AB是圆O的直径,弦CD⊥AB于P.

1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

如图,已知AB,CD是圆O的弦,AB⊥CD,垂足为点E,AB被CD分成3CM,14CM(AE小于EB),求点O到CD的距

作OF垂直AB,则AB=BF=8.5,EF就是点O到CD的距离为4.5设秋千的固定点为A,最低点为B,最高点为C、D,连接CD交AB于O则OC=OD=4m,OB=1.3-0.3=1m,设秋千绳长为x,

如图,PAB、PCD是圆O的割线,PA=PB,求证:AB= CD

证明,根据圆割线与切线的关系,可知PA*PB=PC*PD,又因为PA=PC,则PB-PA=PD-PC即:AB=CD

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,ab是圆o的直径,cd是非直径的任意一条弧,求证:cd

解题思路:过B作弦BE,使BE=CD,连接AE,说明△AEB是直角三角形,由斜边大于直角边得出结论解题过程:证明:过B作弦BE,使BE=CD,连接AE∵AB是⊙O直径∴∠AEB=90°∵Rt△AEB中

如图 在圆o中 cd是直径 ab是弦ab⊥cd于M,OM=3,DM=2,求弦AB的长

OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.

如图,AB,CD是圆O的直径,且AB⊥CD,P为CD延长线上一点,PE切圆O为E,BE交CD于F,AB=6cm,PE=4

连接OE∵∠PEF=90°-∠OEB=90°-∠OBE=∠OFB=∠EFP∴PF=PE=4由勾股定理 PO²=PE²+OE²,得PO=5OF=PO-PF=1,&

如图,AB,CD是圆O的两条弦,点E,F为AB,CD的中点,连接EF,角AEF=角CFE,求证AB=CD

连接OE、OF,∵E、F分别为弦AB、CD的中点∴OE⊥AB,OF⊥CD,(垂径定理)∵∠AEF=∠CFE,∴∠OEF=∠OFE,∴OE=OF,∴AB=CD(相等的弦心中所对的弦相等).

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=