如图,AB为圆O的直径,OC垂直于AB于O,CD与OB交于点F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:15:30
如图,AB为圆O的直径,OC垂直于AB于O,CD与OB交于点F
如图,AB为圆O的直径,C,D为圆O上的两点,且OC评分∠ACD,CF⊥DB于F

证明:(1)作OM⊥AC于点M,ON⊥CD于点N∵OC是∠ACD的平分线∴ON=OM∴AC=CD(2)作CG⊥CD,交DB的延长线于点G∵AB是直径∴∠ACB=90°=∠DCG∵∠A=∠D,CA=CD

如图,AB为圆O的直径,C,D为圆O上的两点,且OC平分∠ACD,CF⊥DB于F

证明:(1)作OM⊥AC于点M,ON⊥CD于点N∵OC是∠ACD的平分线∴ON=OM∴AC=CD(2)作CG⊥CD,交DB的延长线于点G∵AB是直径∴∠ACB=90°=∠DCG∵∠A=∠D,CA=CD

如图,DE是圆O的直径,弦AB⊥CD垂足为C,若AB=6,CE=1则OC=() CD=()

∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD

(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆

如图,AB为圆的直径,OC垂直AB,垂足为O,点E、F、G在圆O上,分别作GM垂直OA,GN垂直OC,EH垂直OC,EK

矩形的对角线相等:连接OB、OE、OF,那MN=OB,HK=OE,PQ=OF,∵OB=OE=OF,∴MN=HK=PQ.

如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE= ___ .

∵AB为圆O的直径,弦CD⊥AB,垂足为点E.∴CE=12CD=4.在直角△OCE中,OE=OC2-CE2=52-42=3.则AE=OA-OE=5-3=2.故答案为:2.

如图,AB是圆O的直径,以OA为直径的圆O1与圆O的弦AC相交于点D,DE垂直于OC,垂足为E.

证明:DE是O1切线因为OA=OC所以<A=<C因为O1A=O1D所以<A=<O1DA所以<O1DA=<C所以O1D平行OC所以<ODE=<CED=90度所以DE为O1切线

如图,圆O的直径CD=10cm,AB是圆O的弦,AB垂直CD,垂足为M.若OM:OC=3:5,求AB的长

8cmm在直径CD上,O为CD中点,OM:OC=3:5所以OM=3OA为半径=5三角形OAM为直角三角形,所以AM=4,同理BM=4,AB=8再问:过程怎么写?再答:画个图,把直角标出来再问:怎么画呢

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

如图,AB是圆O的直径,BC垂直于AB,B为垂足,D是圆O上一点,且AD平行于OC,求证:CD是圆O的切线

连接OD因为OA=OD,所以角OAD=角ODA,因为ad//oc,所以角ado=角doc因为角dob=OAD+ODA所以角cob=角cod证三角形全等得直角

如图,AB是圆O的直径,以OA为直径的圆O1与圆O的弦AC相交于D,de⊥oc,垂足为E

1,连结od,bc;∠oda=∠bca=90度.od平行于bc,o是ab中点,所以d是ac中点,AD=dc.2,找到oa的中点f,f是圆O1的圆心,连结fd,fd平行于oc,因为de⊥oc,所以de⊥

如图,AB为圆o的直径,半径OC⊥AB,点E.F是弧AC的三等分点,DE‖AB.

(1)连接OE、OF,∠AOE=∠EOF=∠FOC,(同弧所对的圆心角相等)在△OED中,∠EOD=60°,∠EDO=90°,∵∠OED=30°.在直角直角形中,30°所对的直角边=斜边的一半.∵OD

如图,AB为圆O的直径,BC、CD为圆O的切线B、D为了切点求AD平行OC

连接OD,OC因为OB=OD,OC=OC,∠ODC=∠OBC=90°所以△OBC全等于△OBD然后得出∠DOC=∠BOC=(180°-∠AOD)/2因为OD=OA所以ODA为等腰三角形即∠ODA=∠O

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图AB为圆O的直径C D为圆O上的点 OC垂直于AD CF垂直DB

∵AB是直径∴∠ADB=∠MDF=90°∵CM⊥AD,CF⊥DB(DF)即∠CFD=∠CMD=90°∴四边形CMDF是矩形∴DM=CF∠MCF=90°即CF是圆切线∴根据切割线定理:CF²=

如图,大圆O的半径是小圆O1的直径,且OC垂直于圆O的直径AB,圆O1的切线AD交OC的延长线于点E,切点为D.已知圆O

如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD,OA=r

(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC

如图,在圆O中,AB是圆O的直径,OC⊥AB,D是CO的中点

连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧

如图,AB为圆的直径,OC垂直AB,垂足为O,点E、F、G在圆O上,分别作GM垂直OA,GN垂直OC,EH垂直OC,

连接OG,OE,OF,根据长方形的对角线相等证明都等于圆的半径,所以都相等