如图,ab是圆o的弦,op⊥oa

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:21:46
如图,ab是圆o的弦,op⊥oa
如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,圆O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.

通过作图可以发现,OAB形成一个等腰三角形,底边长8,腰长10/2=5,OP的长度范围最长,即为腰长,最短即为O点至AB的垂线,对于这个直角三角形,斜边为5,一条直角边为8/2=4,所以另一条直角边O

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

如图,在圆O中,AB为弦,且AB⊥OP于D,PA为圆O的切线,A为切点,AB=8cm,OD=3cm,则PA的长是?

因为AB⊥OP于D,所以AD=AB/2=4CM,在直角三角形AOD中,由勾股定理,得AO^2=AD^2+OD^2=25,解得AO=5,因为PA为圆O的切线,所以∠PAD=∠AOP所以△APD∽△OAD

如图:在圆O中,P是弦AB上一点,OP⊥PC,PC交圆O于点C,求证:PC^2=PA×PB

由AP·PB,联想到相交弦定理,于是延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.

如图,AB是圆O的直径,BC是弦,PA切圆O于A.OP平行于BC,求证:PC是圆O的切线

证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C

如图,圆O的直径为10CM,弦AB为6CM,P是弦AB上一点,若OP的长为整数,则P

题不全,而且没有图撒.再问:则P有几个再答:P点有三个。

如图,AB是圆O的直径,P是园O上的一点,PM是园O的弦,PM交AB于点N,OP丄AB,PN=5CM,MN=4CM,求A

延长po交圆于c,连接mc显然pon相似于pmc所以po/pm=pn/pc设ab=x则po=x/2pc=xpm=9带入x=3根下10

已知:如图,AB是⊙O的直径,P为⊙O外一点,PA⊥AB,弦BC∥OP

证明:如图,连接OC;∵BC∥OP,∴∠B=∠POA,∠BCO=∠COP,∵OB=OC,∴∠B=∠OCB,∴∠COP=∠AOP;∵OC=OA,OP=OP,∴△PCO≌△PAO,∴∠OCP=∠OAP=9

如图,圆o的半径op=10,弦ab过op中点q,且∠oqb=45度,弦ab的长=

作OC⊥AB于点C,则AC=BC【垂径定理】连接OP∵Q是OP中点∴OQ=OP/2=10/2=5∵∠OQB=45°∴OC=OQ*√2/2=5/2*√2∴AC^2=OA^2-OC^2=10^2-(5/2

如图,PA与圆O相切于A点,弦AB⊥OP,垂足为C,CP与圆O相交于D点,已知OA=2,OP=4 求∠POA的度数 弦A

(1)因为PA与圆O相切于A点故∠PAO=90°所以cos∠POA=OA/OP=2/4=1/2即∠POA=60°(2)由(1)得∠POA=60°又弦AB垂直OP所以sin∠POA=AC/AO=√3/2

初三圆与切线的证明题 如图AB为直径,PB为圆O切线,AC平行OP,点C在圆O上,OP交圆O与D,DA交BC与G作DE⊥

费死劲了,半径=5;比较乱,慢慢看;设PO交BC于H,PO平行AC,则OH是中位线,H平分BC,即AB=AC;则AC是切线;且弧CD=BD;延长DE交圆与K,则AB平分DK,弧DB=BK;因弧CD=B

如图在半径为2的圆o中,AP是圆心O的切线,OP与弦AB交于点C,点C为AB中点,∠P=30°,则CP的长度为

/>∵C是AB的中点∴OP⊥AB【垂径定理逆定理:平分弦(除直径外的弦)的直径垂直于弦】∵AP是⊙O的直径∴∠OAP=90°∵∠P=30°∴OP=2OA=4∵∠OAC=∠P=30°(同余角∠AOC)∴