如图,ab是圆o的直径,角bac=90

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:44:51
如图,ab是圆o的直径,角bac=90
如图,AB为圆O的直径,PC切圆o于C交BA延长线于p,BD⊥PC于B,

BD⊥PC于D?PC切圆O于C,连接OC,则OC⊥PC于C,设圆O的半径为r,OC//BD,OB:OP=CD:CP=1:3;CP=3CD;r:OP=1:3OP=3r;OC:BD=OP:BPr:BD=3

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图5,AB是圆O的直径,点C是BA延长线上一点,CD切圆O于点D,弦DE平行CB,Q是AB上的一点,CA=1,CD=根

根据题意,连接OD,△ODC为直角三角形,所以,OD^2+CD^2=OC^2因为OD=R,OC=R+1,CD=√3×R所以,R^2+(√3R)^2=(R+1)^2R^2+3R^2=(R+1)^24R^

如图,AB是圆O的直径,CB、CE分别切圆O于点B、D,CE与BA的延长线交于点E,连接OC、OD.

(1)OB与OD均为半径OC为共同边角CBO与角CDO都是真角可证两三角形相等.(2)ΔDE0为直角三角形则r²+a²=(b+r)²结果为r=(a²-b

如图,AB是圆O的直径,CB是圆O的弦,D是弧AC的中点,过D点作直线与BC垂直,交BC延长线于E点,且BA交延长线于F

1)因为D是圆弧AC的中点,所以AC垂直于DO;因为AB是直径,且C是圆上一点,所以三角形ACB是直角三角形,角ACB=90°,所以AC垂直于BC;所以DO//BC;因为DE垂直于BC,所以DE垂直于

如图,AB是圆O的直径,点E为BA延长线上一点,角BOD=87度,DE交圆O于点C,且CE=AO,求

连接OC,则△CEO为等腰三角形.∠E+∠D=87∠D=∠DCO∠DCO=2∠E即∠D=2∠E3∠E=87∠E=29

如图,AB是圆O的直径,弦CD⊥AB于点E,在劣弧AD上取一点F,连接CF交AB于一点M,连接DF并延长 交BA的延长线

(1)∵直径AB⊥CD于E,∴弧BD=弧BC=1/2弧CD,又∵∠BOD=弧BD,∠DFC=1/2弧CD,∴∠DFC=∠DOB(2)连结OC,∵弧BC=1/2弧CD,∴∠BOC=∠CFD,又∵∠OMC

如图AB是圆O的直径

解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

已知如图AB是圆O的直径,点P为BA延长线上的一点.

第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图 AB是圆O的直径 D在AB上 且AD:BD=1:4 CD⊥AB于D 交圆O于点C 切线CP交BA延长线于P

储备知识:韦达定理:对于关于x的方程ax²+bx+c=0,x1,x2是其两根则有x1+x2=-b/a,x1•x1=c/a连接OC∵AD、BD是关于x的方程x^2-(4m+2)x+

如图AB是圆O的直径,C是BA延长线上的一点,CD与圆O相切于点D连接OD,四边形PQRS是矩形,其中点PQ在半径OA上

【我想,此题应该不只一问吧,第二问是不是求矩形PQRS的面积呢?】【图在上传中请稍等】1)∵CD是⊙O切线,切点为D∴OD⊥CD(圆的切线垂直于过切点的半径)∴Rt△COD中,∠CDO=90°∴CO&

如图,AB是圆O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证 AB^2=BE*BD-AE*A

连接BC、AD因为AB是直径所以AD垂直BE、AC垂直BC因为∠EFA=∠ACB=90度且∠EAF=∠BAC所以三角形AFE相似与三角形ABC所以AE*AC=AB*FA又AE*AC=AB*(FB-AB

如图,ab是半圆o的直径,ac是弦,点p从点b开始沿ab向ba边以1cm/s的速度移动,若ab长为10cm ,点O到AC

作o点到AC的垂线OM,因为OA=5,OM=4,所以AM=3(勾股),推出AC=6,要使APC等腰,即让AC=AP,则AP=6.当p移动4秒即4CM后,AP=AC=6,等腰.

如图,AB是圆O的直径,点C在BA的延长线上,CA=AO,点D在圆O上,∠ABD=30°. 1)求证:CD是圆O的切线.

∠ABD=30°---∠OBD=30°---∠ODB=30°,∠ADB=90°∠BAD=60°-----∠ACD=∠ADC=30°------∠ODC=∠ADC+∠ADO=90°又OD是圆O半径,所以

如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证.

证明:(Ⅰ)连结AD,∵AB为圆的直径,∴∠ADB=90°,又∵EF⊥AB,∴∠EFA=90°,∴A、D、E、F四点共圆,∴∠DEA=∠DFA.(Ⅱ)∵A、D、E、F四点共圆,∴由切割线定理知BD•B

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=