如图,adc是圆o的直径,弦cd垂直ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:48:15
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC
证明:连接AG并延长交BC于D,连接PD,连接OG交AC于E则G是重心,∴E为AC中点,而AO=BO,∴OE//BC=>AG=GD,又AQ=QP,∴QG//PD=>QG//面PBC
(1)做OK⊥CD于点K因为,MA为切线所以,OA⊥AD又,OK⊥CD则,OA和OK为点O到∠ADC两边的距离因为,DO平分∠ADC且,角平分线上的点到角两边的距离相等所以,OA=OK=圆O的半径因为
木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三
证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠
额角ADC不就是角D再问:我问错了,等一下再答:应该是叫圆周角我忘了求采纳哦再问:能不能求出∠ADC度数再答:就是60°啊再问:是∠EAC=∠B=60°不是∠D再答:不对我说错了如果没有其他的关系的话
①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
(1)证明:连接OC、OD,∵∠ADC=45°,∴弧AC的度数是90°,∵AB为直径,∴弧BC的度数也是90°,∴弧AC=弧BC,∵OC为半径,∴OC⊥AB,∴∠COE=90°,∴∠C+∠OEC=90
因为DO=AO(半径相等),所以角ADO=角DAO\x0d因为角ADC=角B而角B+角DAB=90\x0d所以角ADC+角DAB=90,又因为角ADO=角DAO\x0d所以角CDA+角ADO=90,即
(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.
∵CD切⊙O于C,∴∠DCN=∠DAM,又∠CDN=∠ADM,∴△CDN∽△ADM,∴∠CND=∠AMD,∴∠CMN=∠CNM,∴△CMN是以MN为底边的等腰三角形.再问:∵CD切⊙O于C,∴∠DCN
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9
(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O
根据圆内接四边形对角到补得:∠ADC=180°-∠ABC=120°.再问:可是没有四边形再答:AB是圆o的直径,点C,D在圆o上。再问:已经知道怎么做了,同弧所对的圆周角相等,角adc=角abc=60
连接BC∵AB是⊙O的直径∴∠ACB=90°∵∠CAB=35°∴∠CBA=55°∵∠ADC=∠CBA∴∠ADC=55°.故答案为:55.
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=