如图,AO是△在ABC角BAC的平分线,BD垂直AO的延长线于点D,E的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 06:50:21
如图,AO是△在ABC角BAC的平分线,BD垂直AO的延长线于点D,E的中点
如图,已知AO是△ABC的∠BAC的平分线,BD⊥AO交AO的延长线于点D,点E是BC的中点,求证:DE=1/2(AB-

分别延长AC、BD交于一点Q∵AO是△ABC的∠BAC的平分线,BD⊥AO交AO的延长线于点D根据等腰三角形的三线合一的性质;可知ΔBAQ是等腰三角形∴D是BQ的中点AB=AQ又∵E是BC的中点∴DE

已知:如图,在△ABC中,∠ BAC=90°,AO⊥BC于D,BE平分∠ABC.求证:AE=AF

∵∠BAE=∠BAC=90°AD⊥BC即∠ADB=∠FDB=90°∴∠BAE=∠FDB∵BE平分∠ABC∴∠ABE=∠CBE即∠ABE=∠DBF∴△ABE∽△FBD∴∠AEB=∠BFD即∠AEF=∠B

如图,三角形ABC中,∠BAC=90°,AO垂直BC于D,BE平分∠ABC,交AD于F,求证:三角形AEF是等腰三角形

∠AFE=∠BFD=180-∠DBF-∠FDB∠AEF=180-∠ABF-∠BAE∠DBF=∠ABF(角平分线)∠FDB=∠BAE(直角)∠AFE=∠AEF三角形AEF是等腰三角形

求一道数学题如图,在△ABC中,∠C=90°,AO为∠BAC的平分线,且点O在BC上,过点O作OD⊥AB,交AB于点D,

∵∠ACO=∠ADO=90,AO为∠BAC的平分线,AO=AO∴△AOC≌△AOD∴AD=AC=6,DO=CO△OBD的周长=OD+OB+BD=12△ABC的周长=AC+BC+AB=AC+(CO+BO

如图1,已知AO是等腰Rt△ABC的角平分线,∠BAC=90°,AB=AC.(1)在图1中,∠AOC的度数为______

(1)∵AB=AC,AO是∠BAC的角平分线,∴AO⊥BC,∴∠AOC=90°,BO=OC,∵∠BAC=90°,∴BO=OA=OC;(2)S△AOA1=S△BOC1.证明:过点O作MN⊥BC1于M,交

如图,点O在三角形ABC内,AO平分角BAC,且OB=OC.求证:三角形ABC是等腰三角形

做OD⊥AB于D,OE⊥AC于E∴∠ADO=∠AEO=90°∵AO平分角BAC∴∠OAE=∠OAD∵OA=OA∴△AOD≌△AOE(AAS)∴AD=AEOD=OE(或直接:做OD⊥AB于D,OE⊥AC

如图1 在三角形abc中 角bac=90度 AB=AC AO垂直BC F是线段AO上的点(与A,O

再问:第二问怎么做?再答:AB:BE=根号10:2再问:。谢谢啦。。那。第三问呢?

如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,(见下)

(1)连接DN△ADN与△ADC中,∠NAD=∠DAC,AN=AC,共用AD△ADN≌△ADCCD=ND∠BND=2∠BCN∠ANC=∠B+∠BCN∠ANC=∠ACN∠ACB=∠ACN+∠BCN∠AC

如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,

证明:因为AD是角BAC的角平分线所以角DAM=角DAC因为NE垂直AH所以角AHN=角AHE=90度因为AH=AH所以直角三角形AHN和直角三角形AHE全等(ASA)所以AN=AE因为MN=CEAM

如图,已知三角形ABC中,AO、BO、CO分别是角BAC,角ABC,角ACB的角平分线,AB等于4,BC等于5,CA等于

作⊿ABC底边AB上的高CG.则:CG²=BC²-BG²=25-BG²CG²=AC²-AG²=AC²-(AB-BG)&#

如图,在等边三角形ABC中,CO,AO,BO为三个内角的角平分线,D,E,F为AO,BO,CO上的中点.证明:△DEF是

DE为AO,BO中点在△OAB中,DE为中位线DE=1/2AB同理EF=1/2BCDF=1/2AC所以DE=EF=DF所以△DEF是等边△

如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.

(1)证明:∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS

如图,在△ABC中,AO、BO、CO分别平分∠BAC、∠ABC、∠BCA,过点O的垂线分别交AB、AC于点D、E

咳、图貌似是那样的吧、 手画的、 可能不标准、 凑合着看吧、  呵呵、  过程不要深奥、 那给你个简单理解的、 

28、如图,等边△ABC中AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在AD下方作等边△CDE,连BE(1)

(1)证明:因为△ABC和△CDE都是等边三角形,所以AC=BC,DC=CE,∠ACB=∠DCE=60°,则∠ACB-∠DCO=∠DCE-∠DCO,即∠DCA=∠BCE.所以△ACD≌△BCE,故AD

如图,在等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为边在CD下方做等边三角形△CDE,连接BE,

/>∵等边△ABC,等边△CDE∴AC=BC,CD=CE,∠BAC=∠ACB=∠DCE=60∵AO平分∠BAC∴∠CAO=∠BAC/2=30∵∠ACD=∠ACB-∠BCD,∠BCE=∠DCE-∠BCD

如图,等边三角形ABC中,AO是角BAC的平分线,D是AO上一点,以CD为一边且在CD下方作等边三

很简单∵等边三角形ABC∴AC=BC角ACB=60°同理DC=EC角DCE=90°∴∠ACB-∠DCO=∠DCE-∠DCO即∠ACD=∠BCE∴△ACD≌△BCE(SAS)因为抢答来不及写理由而且有点

如图,等边三角形ABC中,AO是角BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边三角形CDE,连接BE

先采纳再问:�ش�再问:�ش�再答:���ֻ�ͼƬӳ������再答:��ô��再问:再答:��˵���再问:ɵ��

如图10,在等边三角形ABC 中,AO是∠BAC的平分线,D为AO上一点,以CD为一边且在CD 下

∵⊿ABC是等边三角形,∴∠ABC=∠ACB=60º,又AO是∠BAC的平分线,∴AO⊥BC又⊿CDE是等边三角形,∴∠BCE=39º,∵AO是∠BAC的平分线,∴AO垂直平分BC

25.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO

1、证明:连接DN∵AD平分∠BAC∴∠BAD=∠CAD∵CN⊥AD∴∠AHC=∠AHN=90∵AH=AH∴△AHC≌△AHN(ASA)∴AN=AC∵AD=AD∴△ADC≌△ADN(SAS)∴CD=N