如图,bd,ce,分别为,ac,ab上的高,m是ab的中点.求证md等于me
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:19:31
证明:∵BD⊥AC,CE⊥AB∴∠ADB=∠AEC=90∵AB=AC,∠BAD=∠CAE∴△ABD≌△ACE(AAS)∴AD=AE∵BE=AB-AE,CD=AC-AD∴BE=CD
AB=AC,D、E分别是中点所以AD=AE又AB=AC共用角A所以△ABD≌△ACE,所以∠ABD=∠ACE,又△ABC等腰,∠ABC=∠ACB,所以∠DBC=∠ECB,所以△OBC是等腰三角形,所以
答案来了哦,你看看吧.你需要去截图的网址中看完整个解答过程哦,再问:能帮忙发过来吗再答:我发链接给你的话系统会直接吞掉的,你输链接进去就可以看完了,很方便的。
因为垂直,所以∠AEC=ADB=90°又因为∠A=∠A,AC=DB,所以△AEC≌△ADB所以BE=CD
等腰三角形两底角相等,由边角边定理证明出三角形ECB和三角形DBC全等,故BD=EC.这应该是课本的例题吧~
由题可知:角A=角B,角ECD=角EDC,角AED=角ADE=2倍角ECD,角DCB=角DBC,角ADE=角CDB,再由角ADE+角EDC+角CDB=180,得5倍角EDC=180,所以角EDC=36
如图,连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,依题意,得DE为△ABC的中位线,∴BC=4x,又∵四边形BCDE为等腰梯形,∴BF=12(BC-DE)=x,则FC=3x,∵BD⊥CE,∴
据题意可得:∠AED=∠ADE,∠ECD=∠EDC,∠BCD=∠BDC.∵∠A=∠B.∴∠AED=∠ADE=∠BCD=∠BDC∵∠ADE+∠EDC=∠ADC=∠BDC+∠B∴∠B=∠EDC=∠ECD=
因为AB=AC,BD=CE且有一个共同的角A所以三角形ABD与三角形ACE全等所以BD=CE
证明:AB=AC:∠ABC=∠ACBBD⊥AC:∠BDC=90°CE⊥AB:∠CEB=90°=∠BDCBC是公共边所以:RT△BDC≌RT△CEB(角角边)所以:BD=CE
由AB=AC可知,角ABC=角ACB,又角BEC=角BDC=90度,所以角BCE=角CBD,由两角(角BCE=角CBD和角ABC=角ACB)及其夹边(BC边公共)可知三角形BCE和三角形BDC全等,即
角BEC=角ADB,所以三角形ABD与三角形HBE相似角ABD=90-角BHE=90-角BAC故角BAC与角BHE相等
证明:∵CE⊥AB,BD⊥AC,∴△EBC和△DCB都是直角三角形,在Rt△EBC与Rt△DCB中BC=CBBD=CE,∴Rt△EBC≌Rt△DCB(HL),∴∠BCE=∠CBD,∴OB=OC.
∵AC⊥BC,AD⊥BD∴∠ACB=∠BDA=90°在Rt△ACB和Rt△BDA中AB=BAAD=BC∴Rt△ACB≌Rt△BDA∴∠ABC=∠BAD又∵CE⊥AB,DF⊥AB∴∠AFD=∠BEC=9
易证Rt△ABC≌Rt△ABD(HL)所以∠DAB=∠CBA易证Rt△CBE≌Rt△DAF(AAS)
(1)画图连接AE、CF,四边形AFCE为平行四边形.(2)证明:∵AF⊥BD,CE⊥BD,∴∠AFO=∠CEO.又∵∠AOF=∠COE,∴OA=OC.∴△AOF≌△COE(AAS),∴OF=OE.又
证明:过点D做DF∥EC交BC的延长线与F,连结DE.∵D、E分别是AC,AB的中点∴DE∥BC∵DF∥EC∴四边形DECF是平行四边形∴CE=FD∴∠DBC=∠DFB∵DF∥BD∴∠ECB=∠DFB
证明:∵BD⊥AC,CE⊥AB∴∠ADB=∠AEC=90∵AB=AC,∠BAD=∠CAE∴△ABD≌△ACE(AAS)∴AD=AE∵BE=AB-AE,CD=AC-AD∴BE=CD
再答:您好,很高兴能回答您的问题,希望对您有帮助!答案见上图。很高兴为你解答,仍有不懂请,满意请采纳,谢谢!----【百度懂你】团队提供再问:亲,非常谢谢再答:不用^_^再问:我还有一个地方不太懂,为