如图,BD垂直于CE于D,DA=DC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:00:53
在直角三角形ABD中有:cosA=AD/AB;在直角三角形AEC中有:cosA=AE/AC;所以AD/AB=AE/AC又因:角A=角A所以ADE相似于ABC所以角ADE=角ABC.
证明:∵BD⊥AC,CE⊥AB∴∠ADB=∠AEC=90∵AB=AC,∠BAD=∠CAE∴△ABD≌△ACE(AAS)∴AD=AE∵BE=AB-AE,CD=AC-AD∴BE=CD
图呢?先证明两个直角三角形相等!再∵AB垂直BD于点B,ED垂直BD于点D,C是BD上一点∴△ABC和△CDE都是直角三角形∵AC=CE,AB=CD∴△ABC≌△CDE(斜边直角边定理)∴∠BAC=∠
由AO平分∠BAC,∴∠BAO=∠CAO,又AO是公共边,∴AO=AO,∠AEO=∠ADO=90°,∴△AEO≌△ADO(AAS)∴EO=DO,∵∠EOB=∠DOC,∴△EOB≌△DOC(ASA)所以
才再答:证明:∵CD⊥AB于D,BE⊥AC于E∴∠CEO=∠BDO=90°∵∠BOD=∠COE∵BD=CE∴△BOD≌△COE∴OD=OE又∵CD⊥AB于D,BE⊥AC于E∴AO平分∠BAC
证明:因为AB=AC所以∠ABC=∠ACB在Rt△BEC和Rt△BCD中BC=BC∠EBC=∠DCB所以Rt△BEC≌Rt△BCD(一边一锐角对应相等的两个直角三角形全等)所以BD=CE(全等△对应边
做ME和MD连线,构成△MED.∵△EBC和△DBC为直角三角形且M为两个直角三角形斜边上的中点.∴ME=MD=(1/2)BC因此,△MED为等腰三角形而N为该三角形的底边的中点,所以,MN⊥DE
证明:∵△ABC面积=1/2*BD*AC=1/2*CE*AB∴BD:AB=CE:AC∵BD⊥AC,CE⊥AB∴△ABD与△ACE为直角三角形在直角三角形∠△ABD与直角三角形∠△ACE中,BD:AB=
角BEC=角ADB,所以三角形ABD与三角形HBE相似角ABD=90-角BHE=90-角BAC故角BAC与角BHE相等
(1)证明:因为BD垂直AC于D,所以角ADB=90度,因为CE垂直AB于E,所以角AEC=90度,即角ADB=角AEC=90,角BAD=角CAE(公共角),所以三角形ADB和三角形AEC相似,所以角
1.因为AB=BC=DC=AD,所以角ABD=角ADB,角DBC=角BDC,又因为四边形为平行四边形,所以AB//DC,角ABD=角BDC,又因为AB=DC,角AFB=角BDC=90度,所以三角形AB
证明:在直角三角形DEB和直角三角形DFC中角EDB=角FDC角DEB=角DFC=90°所以角B=角C又BD=DC所以三角形FDC全等与三角形EDB所以DE=DF根据角的平分线定理,角平分线上任意一点
在AD的延长线上取点G,使GD=AD,连接BG∵DA⊥AC∴∠DAC=90∵BD=CD,GD=AD,∠ADC=∠GDB∴△ADC≌△GDB(SAS),AG=AD+GD=2AD∴∠G=∠DAC=90∵A
∵BD=CD,BF⊥AC,CE⊥AB∴RtΔBED≌RtΔCFD∴∠B=∠C,ED=FDCE=ED+CD=BD+FD=BF∴RtΔABF≌RtΔACE∴AB=AC由AB=AC,BD=CD,AD=AD得
证明:RT△BDA和RT△CEA中:BA=CA∠BDA=∠CEA=90°∠BAD+∠ABD=90°=∠BAD+∠CAE∠ABD=∠CAE所以:RT△BDA≌RT△CEA≌稍候补充再答:证明:RT△BD
∵AB=AC∴∠ABC=∠ACB∵CE⊥AB,BD⊥AC,∠ABC=∠ACB,公共边BC=BC∴△BEC≌△CDB(两角及其中一角的对边对应相等的两个三角形全等)∴EB=CD(全等三角形的对应边相等)
证明:∵∠BAC=90∴∠BAF+∠CAF=90∵BD⊥AF,CE⊥AF∴∠ADB=∠AEC=90∴∠ABD+∠BAF=90∴∠ABD=∠CAF∵AB=AC∴△ABD≌△CAE(AAS)∴AD=CE,