如图,BE,CF是△ABC的角平分线,AN⊥BE于N

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:57:21
如图,BE,CF是△ABC的角平分线,AN⊥BE于N
如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你判断的理由.

AD是△ABC的中线.理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,∠BED= ∠CFD∠BDE=∠CDFBE=CF∴△BDE≌△CDF(AAS)

如图,已知BE垂直于AD,CF垂直于AD,且BE=CF,(1)说明AD是三角形ABC的中线还是角平分线!

(1)AD是△ABC的中线∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°∵BE=CF,∠BDE=∠CFD ∴△BDE≌△CFD(AAS)∴BD=CD,即AD是△ABC的中线.(2)过点B作BG

如图,BE,CF是△ABC的角平分线,AN⊥BE于N,AM⊥CF于M,求证:MN∥BC.

证明:延长AN、AM分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAM=∠BGM,∴△ABG为等腰三角形,∴BM也为等腰三角形的中线,即AM=GM.同理AN=DN,∴MN为△AD

如图,△ABC各角的平分线AD,BE,CF交于点O

(1)证明:∵OB、OC分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-12(∠ABC+∠ACB)=180°-12(1

已知:如图,AD,BE,CF是等边三角形ABC的角平分线.求证:△DEF是等边三角形.

∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.再问:可以再具体些

已知:如图,在△ABC中,点D在边BC上,BE平行CF,且BE=CF.求证:AD是△ABC的中线.

我来回答∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.

已知:如图,ad、be、cf是等边三角形abc的角平分线 求证:三角形def是等边三角形

证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BE,CF分别平分∠BAC,∠ABC,∠ACB∴AF=BF=二分之一AB,AF=二分之一AC,BD=二分之一BC∴AF

如图,BE、CF是△ABC的中线,BE、CF相交于点G.求证

证明:连接EF.∵E、F分别是AC、AB的中点,∴EF‖BC,EF=1/2BC.(1)是(2)平行四边形

如图,AD是△ABC的中线,BE平行于CF,BE,CF分别交AD及其延长线于点E,F,那么BE与CF相等吗?试说明理由

相等因为AD是△ABC的中线所以D是BC的中点所以BD=CD因为BE‖CF所以∠EBD=∠FCD(两直线平行,内错角相等)在△BDE和△CDF中,BD=CD,∠EBD=∠FCD,∠BDE=∠CDF(对

已知:如图,AD、BE、CF是等边三角形ABC的角平分线.求证:△DEF的等边三角形

AD、BE、CF是等边三角形ABC的角平分线,又由等边三角形四线合一(中线,角平分线,中垂线,高线),所以D,E,F为中点,那么DE,DF,EF为中位线,又因为AB=AC=BC所以DE=DF=EF.即

已知:如图,AD、BE、CF是等边三角形ABC的角平分线.

(字母写错了,应该是AD,BF,CE是等边三角形ABC的角平分线)证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BF,CE分别平分∠BAC,∠ABC,∠ACB∴AE

如图,AD,BE,CF是△ABC的三条高,证明AD,BE,CF必定相交于一点(即垂心).(提示:过A,B,C分别作对边的

用内心来证明如图作ML‖BCMN‖ACLN‖AB因为BE⊥AC所以BE⊥MN同理有FC⊥LNAD⊥ML可知四边形ABCN为平行四边形又∠BCN=∠ABC∠MAB=∠ABC则∠BCN=∠MAB则△MAB

已知:如图,在△ABC中,BE、CF是高,D、G分别是BC、EF的中点

∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明

如图,已知BE垂直于AD,CF垂直于AD,且BE=CF,说明AD是三角形ABC的中线还是角平分线

AD是△ABC的中线.理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°(1分)又∵BE=CF,∠BDE=∠CDF,∴△BDE≌△CFD(AAS).∴BD=CD,即AD为△ABC的中线;

如图 AD是△ABC的中线,BE⊥AD,交AD延长线于点E,CF⊥AD于点F,求证BE=CF

证:∵BE⊥AD,CF⊥AD∴BE//CF∴∠DCF=∠DBE又∵∠CDF=∠BDE,BD=CD∴△CDF≌△BDE(两角夹边)∴BE=CF.证毕.

已知:如图,ad,be,cf是等边三角形abc的角平分线

如图所述证明BD=CD=AE=EC=AF=BF之后再证明三角形BDF.DEC.AFE全等所以FE=FD=DE所以三角形DEF为等边你的明白?

已知:如图,AB、BE、CF是等边△ABC的角平分线.求证:△DEF是等边三角形.

∵AB、BE、CF是等边△ABC的角平分线.∴AD⊥BC,BE⊥AC,CF⊥AB,D、E、F是等边三角形三边的中点,∴EF∥BC,DE∥AB,DF∥AC,∴△AEF、△BDF、△DEC是等边三角形,∴