如图,cd为圆o的直径,以d为圆心,do的长为半径圆弧,交圆o于a,b两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:03:02
如图,cd为圆o的直径,以d为圆心,do的长为半径圆弧,交圆o于a,b两点
如图AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H

1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠

如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图,已知AB为圆O的直径,C为圆O上的一点,CD垂直于AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与圆O相

圆O半径R.则9-OD=OD+4.OD=2.5R=6.5=OC则CD=OC的平方减去OD的平方再开方.CD=6.即圆C半径为6,延长DC交圆C於F.据相交弦定理:EF*ED=PE*EQ.即PE*EQ=

如图,四边形ABCD是平行四边形,以AB为直径的圆o经过点D,E是圆o上的一点,且∠AED=40° 求证CD是圆o的切线

连结OD因为∠AED=45°所以∠DOA=90°又因为ABCD为平行四边形所以∠CDO=90°即CD是圆O的切线

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

已知:如图,AB为圆O的直径,BD=CD,交圆O于点D,AC交圆O于点E.

连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)

如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作

观察图形,发现:阴影部分的面积是两半圆面积差的一半,即S阴影=12(S大圆-S小圆)=12(π×32-π×12)=4π.

如图,AB为圆O的直径,BC、CD为圆O的切线B、D为了切点求AD平行OC

连接OD,OC因为OB=OD,OC=OC,∠ODC=∠OBC=90°所以△OBC全等于△OBD然后得出∠DOC=∠BOC=(180°-∠AOD)/2因为OD=OA所以ODA为等腰三角形即∠ODA=∠O

如图已知ab为圆o的直径cd在圆o上点e在圆o外角eac=角d=60

连接OC,则OB=OC∴∠OBC=∠OCB∵∠EAC=∠D=60°∴∠ABC=60°∴∠OBC=∠OCB=∠BOC=60°,∠AOC=120°∴BC=OB=OC∵BC=4∴OB=4∴AB=8∴⌒AC=

如图,AB为⊙O的直径,C为弧AE的中点,CD⊥BE于D

连接AE、OC,相交于F,∵AB为直径,∴∠AEB=90°,∵C为弧AE的中点,∴OC⊥AE,AF=EF,∵CD⊥BE,∴四边形CDEF是矩形,∴EF=CD=3,∴AE=2EF=6,在RTΔABE中,

如图,△ABC中,角BCA=90°,角A=30°,以AB为直径画圆O,延长AB到D,使BD等于圆O的半径.求证:CD是圆

连OC因为∠BCA=90,∠A=30所以∠ABC=60°因为OC=OB所以△OBC是等边三角形所以∠BCO=60,BC=OB,因为BD=OB所以∠D=∠DCB,因为∠ABC=∠D+∠DCB所以∠DCB

如图,圆O半径为2,直径CD以O为中心,在圆O所在平面内转动,当CD转动时,OA固定不动.

(1)由于四边形ABCD不是规则的四边形,可将其分成平行四边形ABCO和△AOD两部分来求解,连接DE,过O作OH⊥BC于H,那么不难得出OH是△CDE的中位线,在直角三角形CDE中,可用直径和CE的

已知 如图 AB是⊙O的直径 点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F

1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

如图:在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,求征:BD=CD.

证明:连接AD,如图,∵AB为⊙O的直径,∴∠BDA=90°,∴AD⊥BC.∵AB=AC.∴BD=CD.

如图,CD是圆O的直径,以D为圆心,DO为半径作弧,交圆O于点A,B

连接OA,OB,AD,有AO=AD=OD,所以∠AOD=60° 同理,∠BOD=60°,所以∠AOB=120°.还可得出∠AOC=180°-60°=120°,所以∠AOB=∠AOC=∠BOC