如图,CD是∠ACB的角平分线,DE垂直且平分AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:52:57
四边形CFDE是正方形.因为DE⊥于BC于E,DF⊥AC于F,所以,∠DEC=∠DFC=90°,而,∠ACB=90°,所以,四边形CFDE是矩形.因为,∠ACB=90°,CD是角∠ACB的平分,所以,
因为AB为直径所以∠ACB=90又因为CD平分∠ACB所以∠ACD=45所以∠ABD=45(同弧对等角
(1)、据题意,在△ABC中∠ABC+∠ACB=180°-∠A=120°,在△DBC中∠D=180°-(∠DBC+∠DCB)=180°-(1/2)(∠ABC=∠ACB)=180°-120°/2=120
(1)已知∠A等于30°,∴∠ABC+∠ACB=150°∵DC和DB平分∠ABC和∠ACB∴∠DBC+∠DCB=75°,∴∠D105°∵∠ABC+∠ACB,∴∠FCB+∠EBC=360°-150°=2
(1)如图,①bd,cd是∠abc和∠acb和∠acb的角平分线且相交于点d,请猜想∠a与∠bdc之间的数量关系,并说明理由;∠abc+∠acb+∠a=180°0.5∠abc+0.5∠acb+∠bdc
(1)∵∠CDB=∠A+∠ACD且CD平分∠ACB∴∠DCB=∠ACD因为∠A=∠ACB∴∠CDB=∠ACB+∠DCB又∵∠ACB=2∠DCB∴∠CDB=3∠DCB(2)∵CE是△ABC的高∠DCE=
因为CD是∠ACB的角平分线,∠ACB=50所以∠DCB=2分之1∠ACB=25°因为DE‖BC所以∠EDC=∠ACB=25°(两直线平行,内错角相等)因为DE‖BC,∠B=80°(已知)所以∠B+∠
∵AF是△ABC的角平分线,∴∠CAF=∠BAF,∵∠1=∠2,∠1=∠AED(对顶角相等),∴∠2=∠AED,∵CD⊥AB,∴∠BAF+∠AED=90°,∴∠CAF+∠2=90°,∴∠ACB=90°
先证明△CEO≌△CFO(ASA),得CE=CF,OE=OF∵CO=DO∴四边形CEDF是平行四边形∵CE=CF,∠BAC=90°,∴四边形CEDF是正方形再问:谢谢,你让我开窍了!过程我补全就可以了
证明:∵CD⊥AB,EF⊥AB∴EF‖CD∴∠E=∠BCD,∠CME=∠ACD∵∠E=∠EMC∴∠BCD=∠ACD∴CD是∠ACB的角平分线
证明:延长CA到E,使AE=AD,连接ED∵AE=AD,∴∠E=∠ADE,∴∠CAD=∠E+∠ADE=2∠E,∵∠CAD=∠2∠B∴∠E=∠B,∠ECD=∠BCD,AD=AD∴△ECD≌△BCD∴BC
答:已知∠ACB=40°,所以∠ECD=∠DCB=20°又因为DE∥BC,所以∠AED=∠ECB=40°,所以∠DEC=140°所以∠EDC=180°-20°-140°=20°∠ADE=180°-70
3做EH垂直AB于H,AEC,AEH为全等三角形,所以CE=EH.因为CE=CF,所以CFG,EHB为全等三角形,EB=CG所以CE=GB2*GB+2=8=BC得出BG=3
∵EF⊥AB∴∠F=90°-∠EDF=90°-∠ADC∵CD平分∠ACB,∠ACB=90°∴∠ACD=∠BCD=45°∠A=90°-∠B∴∠ADC=180°-∠A-∠ACD=180°-∠A-45°=1
∠A=60°,∠ACB=50°所以∠ABC=70°所以∠PBC=35°而三角形DBC中∠CBD=90°∠DBC=70°所以∠DCB=20°所以在三角形PBC中∠BPC=125°
用全称,如:∠ABC∠1=∠2因为CF为角平分线,所以∠ACF=∠FCB因为RT△底边上的中线等于斜边一半.所以CE=AE=BE∠CAB=∠ACE,应为∠CDB=∠ACB=90°,∠B=∠B所以△AC
∠CFA=90-∠CAF∠CEF=90-∠EAB∠CAF=∠EAB∴∠CFA=∠CEFCF=CE再问:∠CFA=90-∠CAF∠CEF=90-∠EAB为什么这样????再答:△CFA是直角三角形,所以
(1):∵在△ACB中:∠A=∠ACB又∵CD为△ACB的角平分线∴∠A=∠ACB=2∠ACD=2∠DCB∵∠A+∠ACD=∠CDB2∠ACD+∠ACD=∠CDB3∠ACD=∠CDB∴∠CDB=3∠D
1、角D=110度,角P=70度角A=40度,角B+角C=180-40=140度,1/2∠B+1/2∠C=70°,在△BDC中,∠D=180-70=110°∠B的外角+∠C的外角=360°-140°=
证明:(1)∵CD⊥AB,∠ACB=90°∴∠CEF=90°-∠CAE,∠CFE=∠AFD=90°-∠FAD∵∠CAE=∠BAE∴∠CEF=∠CFE∴CE=CF(2)易证△ABC∽△EBG∴AC:AB