如图,CD是圆O的直径,点E在圆上,点A在线段DC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:16:56
呵呵.再问:en再答:选我最佳
1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE
设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明
⑴设⊙O的半径为R,则OG=R+3,OE=2+R在Rt△OEG中,由勾股定理得:(R+3)^2=(R+2)^2+3^2解得:R=2⑵∵DG=EG,FG=EG+EF=5=DG+OD=OG,∠DGF=∠E
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
连接BC,∵AB是直径,∴BC⊥AE,∵DE=DB,∴DC=DB=1/2BE(直角三角形斜边上中结等线斜边的一半),连接OD、OC,∵OD是切线,∴∠OCD=90°,∵OD=OC,OC=OB,∴ΔOD
(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA
EC=EB推得角ECB=角EBC有垂直得角ECB=角D则△CEB~△CBDCE/CB=CB/CD则CD=25/3则ED=16/3
证明:连接OE、OD,∵CD切圆O于D,CB切圆O于B∴OD⊥EC,BC⊥AB,DC=BC,∵CE=ED+DC,CE=AE+BC∴ED=AE∵OD=OA,OE=OE∴△EAO≌△EDO∴∠EAO=∠E
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
连接BE,则∠FEP=90°-∠PEB=90°-∠EAB=∠F,从而PE=PF.
(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠
连接OC,则OB=OC∴∠OBC=∠OCB∵∠EAC=∠D=60°∴∠ABC=60°∴∠OBC=∠OCB=∠BOC=60°,∠AOC=120°∴BC=OB=OC∵BC=4∴OB=4∴AB=8∴⌒AC=
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
证明:1.连接OC∵OA,OC是圆O的半径∴∠CAO=∠ACO①又已知AC平分角DAB交圆O于点C则∠CAD=∠CAO②由①②得∠CAD=∠ACO则OC//AD③∵直线CD垂直AD④∴由③④得直线CD
这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定
)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A