如图,D,E分别为AB,AC的中点,ED=EF,求证,FC∥AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:23:02
证明:在△ABC和△ABD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD,∴EB=DC.
角ADE=角B,角A为公共角三角形内和为180度,角AED=180度-(角A+角ADE)角C=180度-(角A+角B)所以角AED=角C所以三角形ADE相似三角形ABC,(角角角)AD/AB=AE/A
(1)证明:连接OD交BC于F;∵D为弧BC的中点,∴OD⊥BC,∵AB为直径,∴∠ACB=90°;又∵DE⊥AC,∴∠CED=∠ECF=∠CFD=90°,∴∠FDE=90°,即OD⊥DE;又∵OD为
AB,AC为互相垂直的两条弦,且OD⊥AB于D,OE⊥AC于E,所以四边形ADOE是矩形,又AB=AC,OD⊥AB,OE⊥AC,所以AE=AD(垂径定理)所以四边形ADOE是正方形希望可以帮到你.
不好意思我只能帮你解决第一个问题本人初中学几何很爱做的事就是把第一问解决了,后面的问题空着,没有深究的精神,鼓励你去做第二问∵三角形ABC为等腰直角三角形,∴AC=AB已知AD=AE,∠EAB=90°
等腰三角形两底角相等,由边角边定理证明出三角形ECB和三角形DBC全等,故BD=EC.这应该是课本的例题吧~
证明:(如图)连接ON、OM∵N为AC弧中点∴ON⊥AC(平分弧所对的一条弧的直径,垂直平分弦)∴∠1、∠2互余∵AD=AE(已知) ∴∠3=∠4(三角形中等边对等角)而∠5=∠
证明:如图,连接BC∵CD⊥AB于D,D是AB的中点,即CD垂直平分AB,∴AC=BC(中垂线的性质),∵E为AC中点,BE⊥AC,∴BC=AB(中垂线的性质),∴AC=AB.
因为AB=AC,BD=CE且有一个共同的角A所以三角形ABD与三角形ACE全等所以BD=CE
(1)DE平行于BC,三角形ABC相似于三角形ADE由于△ADE和△BDE底分别为AD和DB,两三角形高相同,所以面积比等于两个底之比即S△ADE/S△BDE=AD/DB.设三角形BDE的面积为x.可
证明:作EG//ABEG//DBEG:DB=EF:DF..(1)又EG//ABEG:AB=CE:AC因BD=CEEG:DB=AB:AC..(2)由(1)(2)得AB:AC=EF:DF
﹙1﹚∠A=50°∠B=90°50=40°∠ODB=∠B=40°∴∠BOD=180°-40°×2=100°﹙2﹚连接BD∵AB是⊙O的直径,点E在⊙O上,∴∠AEB=90°∵D、F分别是BC和CE的中
是求,求证,∠EAF+∠EDF=180°?∵AD为直径.∴∠AED=∠AFD=90°.(直径所对的圆周角为直角)∴∠AED+∠AFD=180°,∠EAF+∠EDF=360°-(∠AED+∠AFD)=1
连接OM、ON,因为OM=ON,所以∠M=∠N.因为N为弧AC中点,所以ON⊥AC,因为AD=AE,所以∠ADE=∠AED所以∠M+∠MOB=∠N+∠NEC=90°,所以OM⊥AB,即M为弧AB的中点
如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D
∠B的同位角是∠ADE,同旁内角是∠ACB,∠B+∠BDE的度数是180度再问:同位角和同旁内角都只有一对吗还有后面一题的过程谢谢!!表示超急再答:恩,同旁内角因为是关于相连的3条线的,有两对,∠AD
然后呢再问:且AD=31,DB=29,AE=了30,EC=32,找出角1角2角3角4中相等的角再答:等一下我算一哈再问:嗯,谢谢再答:角1234分别在哪里啊,再答:你截图给我看看初一的题目吧,再问:在
1)因为AB为直径,所以∠AEB=90°,∠ADB=90因为AB=AC所以BD=CD又AO=BO,所以OD是三角形ABC的中位线,所以OD‖AC,所以OD⊥BE2)在直角三角形BCE中,BC=2DE=
AD+DC+AC=21又根据题可知 △BED与△CED全等所以BD=DCAD+BD=AD+DC=12所以AC=9cm