如图,E为正方形ABCD内一点,三角形EBC是等边三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:21:24
正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP&
因为四边形ABCD是正方形,三角形PBC是等边三角形,BC=BP=BA,所以∠PBC=60°,∠ABP=30°三角形BAP是等腰三角形,根据等腰三角形的性质得∠PAB=∠APB=(180°-30°)÷
(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE;(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠E
∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°-60°=30°,BC=BE,∴∠ECB=∠BEC=
因为四边形ABCD是正方形所以角BAD=角ADC=角ABC=角BCD=90度AB=BC=AD因为三角形ABE是等边三角形所以AB=AE=BE角BAE=角ABE=60度因为角BAE+角DAE=90度所以
1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P
如图,设E到A点,B点,C点的距离之和的最小值为 √2 +√ 6 .以B为旋转中心,把△AEB按逆时针方向旋转60°,得△FGB,连CF,∴△BEG是正三角形,
1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=
∵ABCD正方形∴AB=BC∵△BCE是等边三角形∴BE=BC=AB,∠EBC=60°∴∠ABE=30°∵BE=BC=AB∴∠BAE=75°∴∠EAD=15°
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA
正方形ABCD的面积=AB²,答案如图
∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,AB=AD=BC.∵△ABE为正三角形,∴∠BAE=60°,AE=AB=BE,∴AE=BE=AD=BC,∴∠DAE=∠BAD-∠BAE=90°-
∠ECD=∠EBA=90º-60º=30º∠EAB=﹙180º-30º﹚/2=75º∠EAD=90º-75º=15
多思考,八年级应该做的出来
∠BCE=30°理由:∵四边形ABCD是正方形∴∠ABC=90°∵△ABE是等边三角形∴∠ABE=∠AEB=60°∵∠ABE+∠CBE=90°∴∠CBE=30°∵∠AEB+∠BEC=180°,∠AEB
如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB,试判断△ECF的形状,并说明理由.(2
E为正方形ABCD内一点,且三角形ABE是等边三角形,则角AED=75°,角DCE=15°.△ADE,△BCE是等腰三角形.∠DAE=∠EBC=90-60=30∠AED=(180-30)/2=75°.
(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9
igxiong008是对的~