如图,pa与圆o相切,切点是a,po与圆o相交于点b,已知pa=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:39:46
如图,pa与圆o相切,切点是a,po与圆o相交于点b,已知pa=4
如图已知AB为圆O的直径,PA、PB是圆O的切线,A、C为切点 ∠BAC=30°

(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图'PA'PB圆O的切线,A'B为切点'AC是圆O的直径'角BAC=25度'求角P的度数

l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似

如图,已知PA是圆O的切线,A为切点,PC与圆O相交于B、C两点,PB=2cm,BC=8cm,则PA的长等于.先怎样证相

证明:连AC,AB,AO,延长AO交圆O于D点可有DA垂直于PA,角DBA=90°得:角ADB=角PAB即:角ACP=角PAB角P=角P三角形ACP相似于三角形BAPAP^2=CP*BP

如图,PA,PB,CD是圆O的切线,A,B,E是切点,CD分别交PA,PB于C

∠APB=40,那么∠ACE+∠CDP=180-40=140,由于A、B、E均为切点,那么OC平分∠ACE,OD平分∠PDC,所以∠ODE+∠OCE=1/2×(∠ACE+∠CDP)=70,∠COD=1

如图,PA,PB分别与圆O相切于点A、B,圆O的切线EF分别交PA、PB与点E、F,切点C在弧AB上,若PA长为2,则三

分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,

如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若AC为⊙O的直径,则图中阴影部分的面积为(  )

∵PA、PB与⊙O相切,∴PA=PB,∠PAO=∠PBO=90°∵∠P=60°,∴△PAB为等边三角形,∠AOB=120°∴AB=PA=3,∠OBC=60°∵OB=OC∴△OBC为等边三角形∴∠OCB

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,若PA长为2,则△P

∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,∴AE=CE,FB=CF,PA=PB=2,∴△PEF的周长=PE+EF+PF=PA+PB=4.故填空答案

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

如图,已知PA是圆O的切线,A为切点,PC与圆相交于B,C两点,PB=2cm,BC=8cm,则PA的长为

切割线定理.分析:根据已知得到PC的长,再根据切割线定理即可求得PA的长.∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=2根号5,此题主要是运用了切割

已知,如图,PA、PB是圆O的切线,A、B是切点,连接OA、OB、OP

1.因为PA为圆O切线所以∠OAP等于90度又因为∠AOP=60°所以∠APO等于30度所以角∠OPB等于30度(这个没什么好说的)2.因为∠APO=∠OPBOP=OP∠COP=∠DOP所以△cop全

如图,PA为圆O切线,A为切点,OP平分角APC 求证:PC是圆O切线

连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵PA是切线,AB是直径

如图,PA为圆O切线,A为切点,OP平分角APC

额,图,再问:再问:求证PC是圆O切线再答:再问:((((;゚Д゚)))))))......谢谢.......

如图所示:已知PA与圆O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于E点,F为CE上一点,且

(1)DE^2=EF*ECDE/EF=CE/ED∠DEF=∠CED所以△EDF∽△ECD所以∠EDF=∠ECDCD//AP所以∠P=∠ECD所以∠P=∠EDF(2)连结AB同一圆弧的圆周角相等:∠AB

如图,PA为圆O的切线,A为切点,OP平分角APC, 求证:PC是圆O的切线

连接oaoc,两个三角形相似,角pco等于九十度

如图,PA.PB是圆o的切线,点A.B为切点

S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2

如图 PA、PB是圆O的两条切线 切点分别为点A 、B,求证PA=PB

证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O