如图,P为圆O外一点,PO,PB为圆O的切线,AB为切点,BC是直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:25:06
(1)(2)问都是作垂线</p1,作OC垂直于AP,OD垂直于BP,用等弦所对的弦心距相等,说明OC=OD,所以PO平分角APB.(到角两边距离相等的点在这个角的平分线上)2也是一样的,做垂线3
PA比PB=3比2设比值是x,有PA=3x,PB=2x在RT三角形OPA中,OA=r,AP=3x,OP=r+2x所以有r²+(3x)²=(r+2x)²r²+9x
弦相等,则弦心距相等,∴PO平分∠APB(到角两边相等的点在这个角的平分线上).
连结OA、OC,作OE⊥PA于E,OF⊥PB于F,由△OPE≌△OPF得PE=PF,OE=OF,由△OAE≌△OCF得AE=CF,∴PA=PC
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
设OP和AC交D因为知道角P=角BAC且角POA=CBA所以角OAP=90所以可以算出AP的值而且AC垂直OP说以可以算出AD的值(面积法等)且OD是AC中垂线ADX2=AC
2倍角BCP+角P=90度,利用弦切角=角A
2倍的根号(r的平方-d的平方)
延长PO交圆于D∴BD是圆直径∴PD=PB+BD=1+2OB∵PA是圆O的切线∴切割线定理PA²=PB×PD2²=(1+2OB)×1OB=3/2
(1)连结OD、OA、OB,因为DF和DA都和圆O相切,所以DF=DA,设DF=DA=x,所以PD=8-x,因为DE是圆O的切线,所以OP垂直DE,所以PD的平方=DF的平方+PF的平方,即(8-X)
(1)点P在线段AB上,理由如下:∵点O在⊙P上,且∠AOB=90°∴AB是⊙P的直径∴点P在线段AB上.(2)过点P作PP1⊥x轴,PP2⊥y轴,由题意可知PP1、PP2,是△AOB的中位线,故S△
(1)连接BA,如图1,∵PA、PB为⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠APB+∠AOB=180°,而∠AOB+∠BOC=180°,∴∠BOC=∠APB,∵∠BO
过点O作OE⊥AB于点E,OF⊥CD于点F∵弦AB=CD∴OE=OF,∠PEO=∠PFO=90°∵OP=OP∴RT△POE≌RT△POF(HL)∴∠BPO=∠DPO,PE=PF∴PO平分∠BPD2.连
这是作业本上的题目把1):作oc垂直AP于C,作OD垂直PB于D.∵PA=PB∴OC=OD(在同圆或等圆中,相等的弦的圆心距相等)∴∠APO=∠BPO(到角两边距离相等的点在角平分线上)(2):作OE
证明:连接OA,OB,∵A是以PO为直径的⊙M上一点,∴∠PAO=90°,根据切线的判定定理,可知PA是⊙O的切线.同理PB是⊙O的切线.
(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF
证明:∵PA作⊙O的切线,切点为A,∴∠PAB=∠C,又∵∠P=∠P,∴△PBA∽△PAC请点击下面的【选为满意回答】按钮.
设半径为r,角P=45°,sqrt(n)指对n开根号,/指除号,乘号省略=>PA=OA=r,=>OP=sqrt(2)r,OB=OC=r,1)PBPB=OP-OB=[sqrt(2)-1]r,PA=[sq
【纠正:AB⊥PO于E】证明:连接OA∵OA=OC∴∠OAC=∠OCA∵∠OAC=∠OAE+∠EAC∠OCA=∠P+∠CAP∠EAC=∠CAP∴∠OAE=∠P∵AB⊥PO∴∠OAE+∠EOA=90