如图,p是边长为根号2的正方形abcd对角线bd上一动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:12:08
如图,p是边长为根号2的正方形abcd对角线bd上一动点
如图,四棱锥P-ABCD中,底面ABCD为正方形,边长是a,PD=a,PA=PC= 根号2倍的a,

1、底面ABCD是正方形,AB=BC=CD=AD=a,PD=a,AD^2+PD^2=2a^2,AP^2=2a^2,根据勾股逆定理,△APD是RT△,同理△PCD是RT△,AD∩CD=D,∴PD⊥平面A

如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

如图,大正方形的边长为根号15+根号5,小正方形的边长为根号15-根号5,求阴影部分的面积.

阴影面积=(√15+√5)^2-(√15-√5)^2=(√15)^2+2*√15*√5+(√5)^2-[(√15)^2-2*√15*√5+(√5)^2]=15+2*√15*√5+5-15+2*√15*

如图,正方形ABCD的边长为2,P为正方形ABCD内一点,且△PBC为等腰三角形,则△CDP的面积为______.

过点P作PE⊥DC于点E,∵△PBC为等腰三角形,∴P在线段BC的垂直平分线上,∴PE=12BC=1,∴△CDP的面积为:12×2×1=1.故答案为:1.

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

利用如图5×5的方格,画出边长为根号13的正方形

(√13)²=2²+3²则:边长为2和3的直角三角形的斜边为√13

已知P是中心为O的正方形ABCD内一点,AP垂直BP,OP=根号2,PA=6,则正方形ABCD的边长是多少

边长为10或者2√13以AB的中点M为圆心做圆.则点O必定在圆上,且∠AMO=90°.因为AP垂直BP,则点P也必定在圆周上.(1)设点P在MO的上方,则∠APO=135°(∠APO所对的弧长为270

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD

(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

如图,正方形ABCD的边长为2,E是CD的中点,在对角线AC上有一点P,则PD+PE的最小值是______.

连接BE,∵四边形ABCD是正方形,E是CD的中点,∴点B、D关于直线AC对称,CE=12CD=1,∴BE即是PD+PE的最小值,∴BE=BC2+CE2=22+12=5.故答案为:5.

如图,P为边长是2的正方形ABCD内一点,△PBC为等边三角形,则S△BPD=?

S△BPD=S△BPC+S△PDC-S△BCD过P作AB,CD的垂线,垂足为E,FAB‖CDP,E,F共线又△PBC为等边三角形易证P为EF中点S△APB=S△CPDS△APB+S△CPD=AB*BC

如图,大正方形边长为根号3+根号2,去掉一个边长为根号3-根号2的小正方形后,求留下的阴影部分的面积

(根号3+根号2)的平方—(根号3-根号2)的平方化简得3+2根号6+2-(3-2根号6+2)=4根号6非常欣赏你的勤学好问精神,如果本题有什么不明白可以追问,

如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值是(  )

如图,连接AE,AP,因为点C关于BD的对称点为点A,所以PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为3,BE=2,∴AE=22+32=13,∴

如图,在边长为2的正方形ABCD中,点Q是BC中点,点P为对角线AC上一动点,连接PB、PQ,

BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PD=2,PA=PC=2根号2,求异面直线PB与AC所成

90°假设PD的中点是E,AC的中点是F,则EF与AC的夹角就是PB与AC所成的角,通过三角形PAD可求出AE=根号5,通过三角形PCD可以求出CE=根号5;在三角形AEC中AE=AC,推出AC垂直E

如图,点p在正方形abcd内,△bpc是正三角形,若△bpd的面积是根号3-1,求正方形abcd的边长

设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(