如图,△ABC中,AD是高,BE平分角ABC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:01:19
如图,△ABC中,AD是高,BE平分角ABC
已知如图,△ABC中,AB>AC,AD是高,AE是角平分线,试说明∠EAD=12(∠C−∠B).

∠EAD=∠CAE-∠CAD=12∠BAC-(90°-∠C)=12(180°-∠B-∠C)-(90°-∠C)=90°-12∠B-12∠C-90°+∠C=12∠C-12∠B=12(∠C-∠B).

如图 在△ABC中,H是高,H是高AD和BE的交点,AD=BD,求证:DH=DC.

直角三角形ADC与直角三角形BEC中有一公共角C,所以角CAE与角EBD相等;又因为AD=BD,所以直角三角形HBD与直角三角形CAD全等(根据角边角定理)所以HD=DC

已知:如图9中,∠B=40度,∠C=60度,AD、AF分别是△ABC的角平分线和高

(1)∵∠B=40'∠C=60'所以角A=180'-40'-60'=80'(2)因为角A=80'所以角DAC=1/2角A=40'又因为AD为高角C=60'所以角FAC=30'所以角DAF=角DAC-角

如图,在△ABC中,O是高AD和BE的交点.

(1)∵O是高AD和BE的交点,∴∠OEC=∠ODC=90°,∴∠C+∠DOE=180°;∵∠DOE+∠AOE=180°,∴∠AOE=∠C;(2)由(1)可知,如果一个角的两边分别垂直于另一个角的两边

初二数学.如图,△ABC中,AD,AE分别是△ABC中BC的高、中线,已知AD=8,CE=7.

∵CE=7AD=8∴根据三角形面积公式S△AEC=AD×CE/2∴S△AEC=8×7÷2=28又∵点E为BC中点,∴BE=CE=7△ABE的高也是AD∴S△ABE=BE×AD/2S△ABE=7×8÷2

如图10,ad是三角形abc中bc边上的高,且角b

因为b+bad=90所以bad=18可以得出b=72cad=36又因为b+bad+cad+c=180所以c=54

如图,在△ABC中,CE是△ABC的高,AD是△ABC的角平分线.⑴若∠ACB=800,∠B=600,求∠AFC的

1∠CAB=180°-∠ACB-∠CBA=40°CE⊥AB∠CEA=90°∠ACE=180°-∠CAB-∠CEA=50°AD平分∠CAB∠CAD=20°∠AFC=180°-∠CAD-∠ACE=110°

如图,AD,A'D'分别是锐角△ABC和△A'B'C'中BC,B'C'边上的高,且AB=A'B',AD=A'D',若使△

BC=B'C'然后根据边角边原则即可证明△ABC≌△A'B'C'

已知:如图,△ABC中,AD是高,CE是中线,DC=BE.求证:(1)△DEC是等腰三角形,(2)∠B=2∠BCE

⑴证明:∵CE是中线,E是AB中点,∵AD⊥BC,∴DE=1/2AB=BE,∴CD=BE=DE,∴ΔCDE是等腰三角形.⑵∵DC=DE,∴∠DCE=∠DEC,∴∠BDE=∠DEC+∠DCE=2∠DCE

如图,在三角形abc中,ad是高

(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD

如图,△ABC中,AB>AC,AD、AE分别是△ABC的高和角平分线.求证:∠EAD=1/2(∠C-∠B)

第一种方法:  第二种方法:在△ABD中,∠EAD+1/2∠A=90°-∠B  设为①在△ACD中,1/2∠A-∠EAD=90°-∠C  设

如图,△ABC中,∠B=65°,∠C=55°,AD是△ABC的角平分线,AE是△ABC的高,那么∠DAE的度数是多少?

△ABC中,∠B=65°,=55°得知∠A=60°AD是△ABC的角平分线得知∠DAC=∠DAB=60°AE是△ABC的高得知∠AEB=∠AEC=90°有∠B=60°,∠AEB=90°,可得∠BAE=

如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数

∠BAD=90-∠B=90-70=20∠BAE=∠BAD+DAE=20+18=38因为:AE是角平分线∠BAC=2∠BAE=2*38=76∠C=180-∠B-∠BAC=180-70-76=34°

如图,在△ABC中,已知∠B>∠C,AD是BC边上的高,AE平分∠BAC.

证明:在△ABC中,∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°-∠B-∠C),∵AD是BC边上的高,∴∠BAD=90°-∠B,∴∠DAE=∠BAE-∠

如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°°,

角bad=90-42=48角bae=48-18=30所以,角a=60角c=180-60-48=72

如图,在△ABC中,AB=AC,AD是高,E在AD上,求证:

证明:(1)∵在△ABC中,AB=AC,AD是高,∴BD=CD(等腰三角形底边上高与底边上的中线重合);(2)∵AD是高,∴∠EDB=∠EDC,在△BDE和△CDE中,ED=ED∠EDB=∠EDCBD

已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,且∠B

(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-30°-50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°-∠B=60°,∴∠DAE=∠BAD

已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线

因为∠B=30°,∠C=50°所以∠BAC=180°-∠B-∠C=100°因为AD,AE分别是△ABC的高和角平分线所以∠DAC=180°-90°-∠C=40°∠EAC=∠BAC/2=100°/2=5

如图,在三角形ABC中,角B等于两个角C,AD是高.求证:CD=AB+BD

证明:在DC取点E,使得BD=DE,连接AE∵AD⊥BC,BD=DE∴AB=AE∴∠B=∠AEB∵∠AEB=∠C+∠EAC,∠B=2∠C∴∠EAC=∠C∴AE=EC∴AB+BD=EC+DE=CD∴AB