如图,以直角ABC的AC为直径作圆O交斜边AB于点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:07:46
如图,以直角ABC的AC为直径作圆O交斜边AB于点E
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

已知:如图,在三角形ABC中,AB=AC,以BC为直径的半圆……

连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC

如图,以Rt△ABC的直角边AB为直径的圆O交斜边BC于点E,F是AC的中点,求证EF是圆O的切线

我画了图,你对照图看看.∠FEA=∠EAE=∠ABE说明∠OEF为直角就行了

(2014•丹徒区模拟)如图,已知直角△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E在线段BC上且

(1)证明:连接OE,OD,在△DOE和△BOE中,OD=OBDE=BEOE=OE,∴△DOE≌△BOE,∴∠ODE=∠ABC=90°°,∵点D在圆上,∴DE是⊙O的切线;(2)∵DE是⊙O的切线,∴

如图已知Rt△ABC的两直角边AC,BC的长分别为6,8,分别以它的三边为直径向上作三个半圆求图中阴影部分的面积

阴影部分面积=三角形面积+两条直角边为直径半圆的面积-斜边为直径半圆的面积因为圆的面积=πr²,而勾股定理是AB²=AC²+BC²所以斜边为直径半圆的面积=两条

如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:DE是圆O的切线

证明:连接BD,OD∵OE//AC∴BE/CE=BO/AO=1∴BE=CE∵AB是直径∴∠ADB=90º,则∠BDC=90º∴DE=½BC=BE【直角三角形斜边中线等于斜

如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:(1)DE是圆O的切线

证明(1)DE与半圆O相切.证明:连接OD、OE.∵O、E分别是BA、BC的中点,∴OE∥AC,∴∠BOE=∠BAC,∠EOD=∠ADO,∵OA=OD,∴∠ADO=∠BAC.∴∠BOE=∠EOD.∵O

如图,以Rt三角形ABC的直角边AC为直径做圆O交斜边AB于点E,半径OD垂直于AC,DE交AC于点H,过点E做一直线交

首先证明EF为圆O的切线连接OE,角EHF=FEF=DHOODH=OEHODH+OHD=90OEF=OEH+HEF=90故EF为圆O切线连接OG三角形CGO全等于EGOGC=GE角B+CAB=90°角

如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆

思路,只要证明ODE为直角即可.容易得知BDC为rt三角形,根据中线定理,DE=BE,又有OD=OB,连接OE,公共边,可得,三角形ODE全等OBE,则角ODE为直角.

1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线

1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD

1.如图,以RT三角形ABC的直角边AB为直径的半圆O,与斜边AC交与D,E是BC边上的重点,连接DE.

只做第二题.用^代表平方CE/ED=6/5,AE/EB=2/3两式相乘,得:(AE/ED)*(CE/EB)=4/5=>(CE/EB)^=4/5(易证:AE/ED=CE/EB)两式相除,得:(AE/CE

(2010•房山区二模)如图,以Rt△ABC的一直角边AB为直径作圆,交斜边BC于P点,Q为AC的中点.

(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP

如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切与点D.

1)连接OD,可得OD⊥BC.∴OD//AC,∠ADO=∠2∵OD=OA∴∠ADO=∠1∴∠1=∠2∴AD平分∠BAC2)∵⊿ODB是直角三角形,OE=OD.∴OD²+BD²=OB

如图,ABC是等腰直角三角形,以直角边AB为直径左半圆,与斜边AC交于D且AB=20,求阴影部分面积.

割补法:阴影面积=等腰直角三角形半径的一半20×20÷2×1/2=400÷2×1/2=100平方厘米再问:你是老师????再答:是啊再问:是小学的,还是初中的,高中的???????再答:小学、初中都是

如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠

再问:第二问呢?再问:我也不会再答:再问:太感谢你了!你救了我啊!再答:没事,我也在学切线再问:呵呵再问:我也才学,就是搞不懂再答:多做一点题就好了再问:诶呀。。。。要做题,我本来就脑子笨笨的,额滴个

如图已知rt三角形abc的两条直角边ac,bc的长分别为3cm,4cm以ac为直径作圆与斜边ab

连接CD∵AC为⊙O直径∴∠CDA=90°(圆周角性质)即AB⊥CD由勾股定理可知:AB=5cm由面积相等可知CD=AC×BC/AB=2.4cm∴根据勾股定理,AD=1.8cm

如图,以Rt△ABC的一直角边AB为直径作圆,交斜边BC于P点,Q为AC的中点.

(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP