如图,半径为O,弦BD=2根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:08:59
连结OC交AB于点DC为弧AB的中点,可得CO⊥AB设圆的半径为r对于三角形OAD,有OD^2+AD^2=OA^2对于三角形BCD,有BD^2+CD^2=BC^2DA=DB,可得OA^2-OD^2=B
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
连接AO、BO,设AO交BD于点F.因为AB=AD,所以AO⊥BD,BF=FD=√3.由勾股定理可求得FO=1 , 所以AF=1.那么△ABD的面积为√3.因为E为弦AC的中点,且
∵CO²+OD²=CD²∴∠COD=90°∵CO=BO∴△COD是的腰三角形∵AB⊥CD∴∠BOD=∠COB=45°∴BD弧=AC弧=45°
为了方便求解,添加三条辅助线第一条就是DE,第二条是OE,第三条是过点O做AB的垂线交AB于H,连接OH因为图形对称,所以求出左半个阴影部分的面积,乘以二就可以了那么这部分阴影部分的面积就是解题的关键
连OC,因为CD⊥AB所以CH=CD/2=√3/2在直角三角形OCH中,由勾股定理,得,OH^2=OC^2-CH^2=1-3/4=1/4解得OH=1/2所以OH=CO/2所以∠COA=60°,因为OA
第一题:因为两条弦互相垂直且相等,所以AD=BC,∠CAD+BAD=90°;连接CD,则弧AD和弧BC所对圆周角为(180°-90°)/2=45°;所以圆半径R=2AD/sin45°=2*2√2*√2
第一题:因为两条弦互相垂直且相等,所以AD=BC,∠CAD+BAD=90°;连接CD,则弧AD和弧BC所对圆周角为(180°-90°)/2=45°;所以圆半径R=2AD/sin45°=2*2√2*√2
由垂径定理得OC垂直平分AB,设OC交AB于E,则AE=根6/2..连接OA,在Rt△OAE中,OA=R,OE=R/2,AE=根6/2,由勾股定理得;R=根2..再问:为什么OE=R/2再答:因为题目
连OB,则OA=OB(同圆的半径相等).连OD,则∠ODA=90°(直径所对的圆周角是直角),即OD⊥AB∴OD是等腰三角形AOB的高及中线,∴AD=BD=1cm,∴AB=2cm在RT△ADO中,∠A
延长CO交圆O于E,则CE是圆O的直径∵D为OC的中点,CE=2OC∴CE=4CD⇒DE=3CD设CD长为x,DE长为3x根据相交弦定理,得AD•BD=ED•CD∴3×2=x•3x=3x2⇒x2=2∴
因为E是AC的中点,所以三角形ABE与BCE,三角形AED与CED面积分别相等,所以三角形ABD与CBD面积相等,所以四边形ABCD的面积是三角形ABD的2倍.\x0d由垂经定理,OA垂直BD,且F为
连结AO,延长AO交圆O于F,连结BF、CF,因为AF是圆O的直径所以,∠ABF=∠ACF=90°(直径所对的圆周角是直角)即AC⊥FC因为AC⊥BD所以,FC∥BD(垂直于同一条直线的两条直线平行)
连接AD,∵AB是直径,∴∠ADB=90°,∴AD=√(AB^2-BD^2)=10√2,∵∠D=∠A,∠C=∠B,∴ΔEDC∽ΔEAB,∴DE/AE=CD/AB=9/9√5=1/√5,∴AE=√5DE
图呢,哥们再问:你不是做过了吗再答:我做过什么了啊--再问:是你打的啊说明一下我是女的不是哥们再答:我错了我什么也没说再问:好吧给你看一下图
这位同学,首先您的图没有,所以我现在只能假设您的圆O圆心是在坐标原点.那么该圆的方程为x方+y方=1,则与y=-x+根号2组成一个二元二次方程,很容易解得x=根号2/2,y=根号2/2即圆与直线的有唯
连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=
确实是好难的一道题,这个题考查了矩形的性质,菱形的性质,切线的性质,切线长定理,垂径定理,轴对称性质,特殊角的三角函数值,30度角所对的直角边等于斜边的一半,等腰三角形的性质等知识,综合性非常强.第一
第一个问题:取AC的中点为D.∵OA=OC=2√2,∴OD⊥AC,∴OD=√(OA^2-AD^2)=√[(2√2)^2-4]=2.即:以O为圆心,与AC相切的圆的半径是2.第二个问题:∵AB=2√3<
p在半圆内?E又在哪儿?再问:不用了,我知道了,谢谢你了再答:不客气