如图,四边形ABCD和四边形EFGC是两个边长分别为4和6的菱形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:02:11
如图,四边形ABCD和四边形EFGC是两个边长分别为4和6的菱形
如图,点E、F、G、H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形

四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形

如图224所示,四边形abcd和四边形cefg均为正方形.

设BF与CE交点为HCH//FG∴CH/FG=BC/BGCH/b=a/(a+b)CH=ab/(a+b)DH=CD-CH=a-ab/(a+b)=a²/(a+b)EH=CE-CH=b-ab/(a

如图,四边形ABCD和四边形EBFD都是平行四边形,且点E,F都在AC上,求证:AE=CF

连接BD交AC于点O因为四边形ABCD和四边形EBFD都是平行四边形所以AO=CO,EO=FOAE=AO-EOCF=CO-FO所以AE=CF

如图,点O是四边形ABCD对角线AC的中点,E,F分别为AB,AD的中点,连接OE,OF得四边形AEOF与四边形ABCD

相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形

如图,在四边形ABCD中,点E,F分别是AD BC的中点,三角形ABM与三角形CDN 面积分别7和11,求四边形EMFN

.7+11=18答案是18连接ef你会发现EMF面积=AMB面积(因为ABE=AEF)同理ENF=DNCunderstand?再问:为什么会EMF面积=AMB面积(ABE=AEF)?不明白啊,只能看出

如图,四边形ABCD和四边形AEFD都是平行四边形,求证四边形BCEF为平行四边形

证明:∵四边形ABCD是平行四边形∴AD‖BCAD=BC∵四边形AEFD是平行四边形∴AD‖EFAD=EF∴BC‖EFBC=EF∴四边形BCEF为平行四边形

1.已知:如图1,四边形ABCD和四边形AEFD都是平行四边形.求证:四边形BCFE是平行四边形.

1.证明:∵ABCD是平行四边形∴AD‖BC,AD=BC∵AEFD是平行四边形∴AD‖EF,AD=EF∴BC‖EF,BC=EF∴四边形BCFE是平行四边形2.证明:∵ABCD是平行四边形∴OB=OD,

如图,四边形ABFE和四边形EFCD都是平行四边形,四边形ABCD是平行四边形吗?说明你的理由.

四边形ABCD是平行四边形.理由:∵四边形ABFE是平行四边形,∴AB∥EF且AB=EF,同理可得EF∥DC且EF=DC,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形.

如图,在四边形ABCD中,对角线AC与BD相交于O,E.F分别是OA和OC的中点,四边形BFDE是平行四边形吗?

如图,在四边形ABCD中,对角线AC,BD相交于点O,E,F分别为OA,OC的中点,求证:四边形BFDE是平行四边形答案:【必须是平行四边形ABCD】证法1:∵四边形ABCD是平行四边形∴AO=CO,

如图,四边形ABCD中,

∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B

如图2,已知四边形ABCD,E,F分别为AD,BC的中点,连接BE、DF,四边形EBFD与四边形ABCD的面积之比是

将BD连接形成三角形ABD和三角形CBD,分别以B、D点向AD、BC作垂线,很明显,因为E、F分别为AD、BC的中点,所以三角形BED:三角形ABD=1:2;同理,三角形BFD:三角形CBD=1:2.

如图 四边形ABCD为正方形 E是CF上一点 若四边形ABCD是菱形 求∠EBC

∠EBC=15°很高兴为您解答,祝你学习进步!有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!

如图,四边AEFD和四边形EBCF都是平行四边形.求证四边形ABCD是平行四边形

/>∵四边AEFD和四边形EBCF都是平行四边形∴AD∥EF,DF∥BCAD=EF,EF=CB∴AD∥BC,AD=BC∴四边形ABCD是平行四边形(一组对边相等互相平行的四边形是平行四边形)【数学辅导

如图,点A B E在一条直线上,且四边形ABCD和四边形BEFG都是正方形,在图中画一个正方形,

如图示,正方形CEKH的面积等于正方形ABCD与BEFG的面积和:

如图E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )

联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以

如图,四边形AEFD和EBCD都是平行四边形,求证:四边形ABCD是平行四边形.

平行四边形的判定定理:1、两组对边分别相等;2、一组对边平行且相等;3、对角相等;4、两组对边分别平行;5、对角线互相平分.你看能用上哪一个?

如图,已知四边形ABCD中,E、F分别是AD、BC的中点,连接DF、BE.四边形BEDF的面积为6,则四边形ABCD的面

连接BD,因为E是AD中点,所以S△AEB=S△BDE因为F是BC中点,所以S△DFC=S△BDF所以S△AEB+S△DFC=S△BDE+S△BDF=S四边形BEDF=6所以S四边形ABCD=S△AE

如图1:四边形ABCD和四边形EFGH都是正方形,求证△ABF≌△DAE

第二题:连接AO没错,然后再延长BD,交AO于点M(M是自己设的).这样AOC≌MOB,把AOC补到MOB,这样就是四分之一大圆面积减去四分之一小圆面积,最后等于S阴=2π

如图在四边形ABCD中,顺次连接四边的中点E,F,C,H,构成一个新的四边形.证明四边形E,F,G,H是平行四边形

连接bd,因为f,g为bc,dc中点,所以fg平行且等于二分之一bd,同理可得,eh平行且等于二分之一bd,一组对边平行且相等的四边形是平行四边形,所以efgh是平行四边形

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD