如图,圆o中,直径ab垂直于cd,e为dc延长线上一点,be交圆o于f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:01:27
如图,圆o中,直径ab垂直于cd,e为dc延长线上一点,be交圆o于f
如图,在圆O中,半径OC垂直于AB直径,OE=OF,求证BG=CF

是不是应该求BE=CF啊?BG绝对不会=CF的,BE=CF用全等三角形就好了

如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图,AB是圆O的直径,CE是切线,切点为C,BE垂直CE于E,叫圆O于D,求证AC=CD

证明:连接OC,OD∵CE是切线∴OC⊥CE∵BE⊥CE∴OC//BE∴∠AOC=∠ABD∵∠AOD=2∠ABD【同弧所对的圆心角等于2倍的圆周角】∴∠AOC=∠COD∴AC=CD【相等圆心角所对的弦

如图,AB是圆O直径,C是弧BG的中点,CD垂直AB于D,BG交CD,AC于E,F

证明:(2)连接BC.弧BC=弧GC,则∠CBE=∠BAC.AB为直径,则∠ACB=90°,又CD⊥AB.∴∠BCE=∠BAC(均为∠ACE的余角).∴∠BCE=∠CBE(等量代换),得CE=BE.则

如图,圆o中,AB是直径,弦CE垂直EF,HF垂直EF,GE、HF交AB于C、D.求证:AC=BD

证明:作OH垂直EF于H,则EH=HF.∵GE⊥EF,OH⊥EF,HF⊥EF.∴GE∥OH∥HF.∴CO:OD=EH:HF=1:1(EH=HF)故CO=OD,OA-OC=OB-OD,即AC=BD.

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.

证明:(1)因为PA⊥平面ABC,且BC⊂平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.又PA∩AC=A,所以BC⊥平面PAC.(2)由(1)知BC⊥平面PAC,∵BC⊂

如图,已知PA垂直于圆O所在平面,AB是圆O的直径,C是圆周上一点,则图中面面垂直的共有几对?

图看不到没搞上来吧再问:图片不太清楚我知道有PAC⊥ABC,PAB⊥ABC,PAC⊥BPC,答案说是四对,另一对我找不出谢谢

如图,已知ab是圆o直径,bc垂直于ab,

连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD2、在△COB和△COD中OD=OBCO=CO

如图,圆O中,直径CD垂直弦AB于E,AM垂直BC于M,交CD于N,连AD

联接BD,因为CD为直径,点b为圆上一点,所以DB垂直于BC,又因为AM垂直于BC,所以AM平行于BD,所以角MAB=角DBA,因为CD垂直于弦AB,所以AE=BE,又角AEC=角DEB(对顶角相等)

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,圆O中,弦CD垂直于直径AB,E为AB延长线上一点,CE交圆O于F

(连接DE)记DE与⊙O的交点为G,∵DF=EF,∴∠FDE=∠FED,∠CFD=∠FDE+∠FED=2∠FDE,∵CD⊥AB,AB是直径,∴弧AC=弧AD,连接AF,则∠CFA=∠AFD,∠CFD=

如图,己知PA垂直于平面ABC,AB是圆O的直径,C是圆O上任意一点,求证 平面PAC垂直于平面

因为AB是直经,所以角ACB是直角再答:所以AC垂直于BC再答:且AC属于平面PAC再答:BC属于平面PBC再答:电大校长还有问题吗再问:再答:校长我想进你的学校,开个后门好吗再问:。。。。。再答:这

如图AB为圆O的直径C D为圆O上的点 OC垂直于AD CF垂直DB

∵AB是直径∴∠ADB=∠MDF=90°∵CM⊥AD,CF⊥DB(DF)即∠CFD=∠CMD=90°∴四边形CMDF是矩形∴DM=CF∠MCF=90°即CF是圆切线∴根据切割线定理:CF²=

如图,在圆O中,C,D是直径AB上两点,且AC=BD,MC垂直AB

1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就

如图已知圆o中,半径OD垂直于弦AB,垂足为C,

分析:此题用到了垂径定理和圆周角与圆心角的关系,同时还有勾股定理

已知如图,ab是⊙o的直径,od垂直于ab,垂足为o,db交⊙o于点c

图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&

如图,AB是圆O的直径,OC垂直AB交圆O于C,求证三角形ABC是等腰直角三角形

证明:因为AB是直径,所以角ACB为直角,又因为OA=OB=OC且OC垂直AB交圆O于C所以角BAC=角CBA=45度所以AC=BC所以三角形ABC是等腰直角三角形

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A