如图,AB是圆O直径,C是弧BG的中点,CD垂直AB于D,BG交CD,AC于E,F
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:23:35
如图,AB是圆O直径,C是弧BG的中点,CD垂直AB于D,BG交CD,AC于E,F
求证:(1)CF=2DE
(2)OE是三角形ABF的中位线
(3)若D是OB中点,则三角形CEF是等边三角形
图发不上来.
求证:(1)CF=2DE
(2)OE是三角形ABF的中位线
(3)若D是OB中点,则三角形CEF是等边三角形
图发不上来.
证明:(2)连接BC.
弧BC=弧GC,则∠CBE=∠BAC.
AB为直径,则∠ACB=90°,又CD⊥AB.
∴∠BCE=∠BAC(均为∠ACE的余角).
∴∠BCE=∠CBE(等量代换),得CE=BE.
则∠FCE=∠CFE.(等角的余角相等),得FE=CE.
∴FE=BE.(等量代换)
又AO=BO,故OE为⊿ABF的中位线.
(3)若D为OB中点,连接OC;又CD垂直OB,则OC=BC.
∵BC=OC=OB,则⊿OBC为等边三角形.
∴∠OBC=60°,∠BAC=30°.
又CD垂直AB,则∠ACD=60°.
∵∠FCE=60°,FE=CE.
∴⊿CEF为等边三角形.
如图,AB是圆O直径,C是弧BG的中点,CD垂直AB于D,BG交CD,AC于E,F
AB是圆O的直径,D是半圆上任一点,CD垂直AB于C,E是CD延长线上任意一点,AE交半圆于G,BG交CD于F,求证:C
已知:如图AB是圆o的直径,点E是弧AD的中点,连接BE交AD于点G,BG的垂直平分线CF交BG与点H,交AB于点F,交
AB是圆O的直径,C为弧AE的中点,CD垂直AB于D,交AE于点F,连接AC,求证:AE=CF.
3,如图,BC是半圆O的直径,点G是半圆上任一点,A为弧BG的中点,AB垂直BC于D,且交BG于点E……
如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于F,若CD为六 AC为8 求圆直径
如图,AB是圆O的直径,C是弧AE的中点,CD垂直AB于D,交AE与点F连接AC,试说明AF=CF
如图AB是圆O的直径,AE为弦,C为弧AE的中点,CD垂直AB于点D,交AE于点F,BC交AE于点F,求证AF=CF.
如图,AB是圆O的直径,AC是圆O的弦,D是弧AC的中点,DE垂直AB于点E,交AC于F,DB交AC于G,求证AF等于F
如图在三角形ABC中,D是BC的中点,过D点的直线GF交与AC于F,交AC的平行线BG于G点,DE垂直于DF交AB于点E
如图,AB是圆O的直径,OC⊥AB,交圆O于点C,D是弧AC上一点,E是AB上一点,EC⊥CD,交BD于点F.
如图,已知AB为圆o的直径,CD是弦,AB垂直于CD于E,OF垂直于AC于F,BE=OF