如图,圆o中,直径cd垂直ab于m,ae垂直bd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:10:10
如图,圆o中,直径cd垂直ab于m,ae垂直bd
如图AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H

1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠

如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图,在圆O中,AB是直径,CD是弦,CE垂直CD与点c,交AB与点E,DF垂直CD,交AB与点F.求证AE=BF

证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB

很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB

已知:如图,圆o中,AB是直径,BC=CF,弦CD垂直AB于点D交BF于F,求证:BE=EC

证明:∵AB是直径∴∠ACB=90°∴∠BAC+∠ABC=90°∵CD⊥AB∴∠BCD+∠ABC=90°∴∠BAC=∠BCD∵BC=CF∴∠BAC=∠CBF(等弦对等角)∴∠BCD=∠CBF∴BE=E

如图,圆O中,直径CD垂直弦AB于E,AM垂直BC于M,交CD于N,连AD

联接BD,因为CD为直径,点b为圆上一点,所以DB垂直于BC,又因为AM垂直于BC,所以AM平行于BD,所以角MAB=角DBA,因为CD垂直于弦AB,所以AE=BE,又角AEC=角DEB(对顶角相等)

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

已知:如图,圆O中,直径CD垂直弦AB于E,弦BE平行CD.求证:劣弧AB=2弧DF.(第3题)

连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df

如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF

证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)

如图,圆O中,弦CD垂直于直径AB,E为AB延长线上一点,CE交圆O于F

(连接DE)记DE与⊙O的交点为G,∵DF=EF,∴∠FDE=∠FED,∠CFD=∠FDE+∠FED=2∠FDE,∵CD⊥AB,AB是直径,∴弧AC=弧AD,连接AF,则∠CFA=∠AFD,∠CFD=

如图,已知,在圆O中,直径AB=4,点E是OA上任意一点,过E作弦CD垂直AB

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

如图,在半径为5的圆O中,AB直径,弦CD垂直AB,弦AD=2倍根号5,求cosD的值

连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=

如图,CD为圆O的直径,弦AB垂直CD于点E,CE=1,AB=10,求CD的长

∵CD是⊙O的直径,AB⊥CD∴AE=BE∵AB=10∴AE=5设OA=R∴OE=R-1根据勾股定理:R²=5²+(R-1)²解得R=13∴CD=2R=26

如图,已知⊙O中,直径CD与弦AB垂直,垂足为E,CD=10,DE=2,求AB的长

连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8

如图,AB是圆O的直径,弦CD垂直AB于点M,连结CO,CB.

(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM

如图,在圆O中,AB,CD是两弦,且AB>CD,OE垂直于AB于点E,OF垂直于CD于点F,求证O

做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=

如图,在圆O中,AB CD 是俩条弦 OE垂直AB OF垂直CD 垂足为EF 1

①OE=OF,因为OA=OB=OD=OC且∠AOB=∠COD所以△AOB与△DOC全等垂线也相等②AB=CD弧AB=弧CD∠AOB=∠COD,因为圆中任意与圆点距离相等的弦的长度都相等,弦相等弧一定相