如图,圆心O是△ABC的外接圆,AC是直径,过点O作线段OD⊥AB于点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:20:40
连接co,同弧所对的圆周角是圆心角的一半,角aoc就等于120°半径oa=oc所以角aco=30°
第一题以前学的知识忘了差不多了~.二题还是比较简单的,△ABD是等边直角三角形,∠DAB=45°,那么∠FAD=∠DAB+∠EAB=60°.,△ABD是等边直角三角形,AB=2,显然可以算出AD的长,
证明:∵AB=AC∴∠B=∠ACB连接CD,则ABCD四点共圆∴∠ADC+∠B=180º∵∠ACE+∠ACB=180º∴∠ADC=∠ACE又∵∠DAC=∠CAE∴⊿ADC∽⊿ACE
(1)证明:连接OB,∵OC=OB,AB=BP,∴∠OCB=∠OBC,∠PAB=∠PBA,∵AP为圆O的切线,∴∠PAB=∠C,∴∠PBA=∠OBC,∵∠ABC=90°,∴∠OBC+∠OBA=90°,
连接dc因为ad为直径所以角acd为直角角abc等于角cad又因为角abc和角adc弧ac所对应的圆周角所以两角相等即三角形cad为等腰直角三角形因为oa为5所以ad为10所以ac等于cd等于五倍的根
∵AC=3,BC=4,AB=5,O是其外接圆的圆心,∴△ABC是直角三角形,且O是AB的中点∴cos∠OAC=35,OA=52∴OA•OC=OA•(OA+AC)=OA2+OA•AC=254+52×3×
(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM-DM=BM-MF,即BF=CD.(2)连接BE,则∠AB
(1)证明:连结AO并延长交BC于D、BC于E,∵AP切⊙O于点A,∴AP⊥AE,∵AB=AC,∴AB=AC,∴AE⊥BC,∴AP∥BC,∴∠APC=∠BCP,(2)∵AE⊥BC,∴CD=12BC=2
延长AO交圆O于D,连结CD,则三角形ACD为直角三角形,根据同弧所对的圆周角相等可得∠D=∠B在直角三角形ACD中SinD=SinB=3/4=AC/AD而AD=2R=16所以可求AC=12
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
连接AO和BO,PO=PO,∠PAO=∠PBO=90°,AO=BO,证明△OAP与△OBP全等.r=2根号3,最大值为6+2根号3再问:这是什么啊???能竖着写吗。我多给你分。谢谢了。
证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF
证明:连接BE,∵AE是⊙O的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.∵AD是△ABC边上的高,∴∠ADC=90°.∴∠CAD+∠ACB=90°.∵∠E=∠ACB,∴∠BAE=∠CAD.
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/
等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=
在直角三角CBE中,CE=3,斜边BC=6,所以角ABC=30度,角AGC=角ABC=30度(同弧所对圆周角相等),又因为CG是圆直径,得CA垂直AG,所以CG=2AC=2*4=8
(1)根据已知条件得△ABC为RT△,∠C=90RT△ABC与RT△ABD共用∠ART△ABC∽RT△ABD同理可求RT△BDC∽RT△ABDRT△BDC∽RT△ABC(2)AC=8,BC=6根据勾股
OA=OC∠OAC=∠OCAOC平行AB∠AOC+∠DAB=180°∠AOC+∠OAC+∠OCA=180°∠OCA=∠CAB∴AC平分∠DAB第二问还没出来-=容易求得AC平分∠DAB所以弧BC=弧C