如图,在rt三角形中,角acb=90度,将三角形ABC绕b点作顺时针

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:10:25
如图,在rt三角形中,角acb=90度,将三角形ABC绕b点作顺时针
如图 在rt三角形abc中 角acb等于90度 a=5 c=13 求b

∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/

如图RT三角形ABC中,角Acb等于90度,角B等于30度

(1)bc=cd/sin30=4*2=8ac=cd/cos30=三分之8根三ac*bc=ab*cd*0.5===>cd=三分之32根三(2)ac=ab*sin30=0.5*12=6角acd=角b=30

如图 在rt三角形abc,角acb=90度,cd是斜边ab上

解题思路:根据题意得出每对三角形中的两组内角相等,可得三角形相似解题过程:解:有三对三角形相似,即:△ACD∽△CBD△ACD∽△ABC,△CBD∽△ABC理由:①∵CD⊥AB,&there

如图,在RT三角形ABC中,∠ACB=90,AC=5,CB=12

证明:由于△ABC为直角三角形,且∠ACB=90°,且D在圆上则有AD为直径从而有∠AED=90°因为∠ACB=∠AED=90°,AD=AD,∠CAD=∠EAD所以△ACD全等于△AED所以AE=AC

如图,在Rt三角形ABC中,角ACB=90度,D是AB上一点,且角ACD=角B

用三角形的外角因为AE平分∠BAC所以∠CAF=∠BAE因为∠ACD=∠B所以∠CAF+∠ACD=∠BAE+∠B因为∠CFE是三角形ACF的外角所以∠CFE=∠CAF+∠ACD,因为∠AEC是三角形A

已知:如图,在Rt三角形ABC中,角ACB=90度,CD垂直AB.求证:角A=角DCB

亲爱的楼主:∠ACB=90°∴∠B+∠A=90°∵CD⊥AB∴∠B+∠DCB=90°∴∠A=∠DCB祝您步步高升

已知如图在rt三角形abc中角acb等于九十度cd垂直于ab垂足为d求证角a等于角dcb

∠ACB=90°∴∠B+∠A=90°∵CD⊥AB∴∠B+∠DCB=90°∴∠A=∠DCB再问:谢谢你再答:不用谢!再问:脑子短路了再问:^ω^再答:呵呵!

如图,在RT三角形ABC中,角ACB=90度,AB=36,AC=18,BC的中垂线角AB于D,求DE的

∵在RT三角形ABC中,角ACB=90°,且DE是BC的中垂线∴∠DEB=90°=∠ACB,三角形DEB为Rt三角形,BE/BC=1/2∵Rt三角形DEB和在RT三角形ACB共一个∠B∴RT△DEB∽

如图,在Rt三角形ABC中,角ACB=90度,CD垂直AB于D,AF平分角CAB交CD于点E,交C

过G做AB垂线交于HCF=AC*tan(∠CAB/2),AD=AC*cos(∠CAB),DE=GH=AD*tan(∠CAB/2)=AC*cos(∠CAB)*tan(∠CAB/2),GB=GH/cos(

三角形相似证明,如图,在Rt三角形abc中,角acb等于90度cd垂直于ab

(1)因为,CD⊥AB则,∠ACB=∠CDB=90°即,∠A+∠ABC=∠BCM+∠ABC=90°所以,∠A=∠BCM①因为,CD⊥AB,DH⊥BM则,∠CDB=∠BHD=90°即,∠DBM+∠EDB

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在rt三角形abc中角acb等于90度,AC等于bc等于6cm

以AC为X轴,以A为原点建立直角坐标系,则A(0,0)、B(6,6)、C(6,0),直线AB的解析式为y=x,设P点坐标为(x,x),过P点作PD垂直BC于D,作PE垂直AC于E,依题意AP=√2t,

如图在rt三角形abc中角acb等于90度 ac等于10cm bc等于15cm

(1)当t=4时,∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动,点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴AP=4cm,PC=AC-AP=6cm、CQ=2×4=8cm,∴PQ=根号

如图,在Rt三角形ABC中,角ACB=90度

证明:∵∠ACB=90∴a²+b²=c²,S△ABC=a×b/2∵CD⊥AB∴S△ABC=c×h/2∴a×b/2=c×h/2∴a×b=c×h∴ab=ch∴1/a²

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,在Rt三角形ABC中,角ACB=90度,AC=BC=6

欲使四边形QPCP'为菱形,必须PC=PQ(AC-AD)²+PD²=PE²+(BC-EC-BQ)²∵AP=√2t,∴AD=PD=EC=t(6-t)

如图,RT三角形ABC中,角ACB=90度,AC=4,

1、设P至AB距离为PQ,△APQ∽△ABC,PQ/BC=AP/AB,根据勾股定理,BC=3,PQ=y,AP=AC-PC=4-x,y=3(4-x)/5.2、设内切圆半径=r,连结内心O与三顶点,OA、

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的