如图,在△ABC中,BA=BC,以AB为直径的圆O交BC于点E,点E是CD的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:14:56
如图,在△ABC中,BA=BC,以AB为直径的圆O交BC于点E,点E是CD的中点
(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.

因为AB=AC,所以∠ABC=∠ACB=45,∠ACE=135;又AC=CE,所以∠CAE=∠AEC=(180-135)/2=22.5;因为AB=BD,所以∠BAD=∠BDA=(180-45)/2=6

(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试

(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=12(180°-∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=12∠ACB=22.5°,在△A

如图,在△ABC中,AB=AC,D在BA的延长线上,且AD=AE,点E在DF上,DE交BC于F,试说明DF⊥BC

∵AD=AE∴∠D=∠AED∵AB=AC∴∠B=∠C∵∠BAC是△AED的外角∴∠A=2∠AED∠A+∠B+∠C=1802∠D+2∠C=180∠AED+∠C=90°又AED=∠FEC故得正

在△ABC中,BA=BC,

如图2,连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC,∴AD=CD,AP=PC,PD=PD,在△APD与△CPD中,∵AD=CDPD=PDPA=PC∴△APD≌△CPD,∴∠ADB=∠C

如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线交AC于D.求证:AD=二分之一DC

这是一个公式,在直角三角形中,30度角所对的边是斜边的一半.在三角形BDC中,BD是30度角角C的对角,CD为斜边,所以BD=1/2DC角DBA等于角A等于30度,所以BD=AD最后,再用等量代换,得

如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=12DC.

如图,连接DB.∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD,∵BA=BC,∠B=120°,∴∠A=∠C=12(180°-120°)=30°,∴∠ABD=30°,又∵∠ABC=120°,∴

如图,△ABC中,AB=AC,D在BA的延长线上,E在AC上,且AD=AE,试说明:DE⊥BC

证明:延长DE交BC于F.因AB=AC,所以∠C+1/2∠BAC=90度.因∠BAC=∠DAE+∠EAD,AD=AE,所以∠DEA=1/2∠BAC,所以∠CEF=∠BAC,所以∠CEF+∠C=90度,

如图:Rt△ABC中,角ABC=90°,BC<AB,在BC的延长线上取一点P,使BP=BA,分别过点B,P作AC的垂线B

做PF垂直BD的延长线交于点F,因为角PBD=角A,BP=AB,角ACB=角BPF=角ABD,所以三角形ABD全等于三角形BPF,所以AD=BF,因为DF=PE,所以AD=PE+BD

如图,△ABC中,AB=AC,在BA的延长线上取AE=AF,求证:EF⊥BC

证明作AD⊥BC于点D则AD平分∠BAC∴∠BAD=1/2∠BAC∵AE=AF∴∠E=∠AFE∴∠BAC=∠E+∠AFE=2∠E∴∠E=1/2∠BAC∴∠BAD=∠E∴AD∥EF∵AD⊥BC∴EF⊥B

如图,△ABC中,AB=AC,E在BA的延长线上,AE=AF.求证:EF⊥BC

过A点作AD⊥BC,垂足为D.则AD为∠BAC的角平分线∵AE=AF∴∠E=∠AFE∵∠BAC=∠E+∠AFE∴∠E=1/2∠BAC∴∠E=∠BAD∴EF∥AD∵AD⊥BC,EF∥AD∴EF⊥BC

如图,已知△ABC中,AB-AC,F在AC上,在BA的延长线上截取AE=AF,求证ED垂直BC.

证明:我们只要证明∠B+∠E=90°就可以得到ED⊥BC了,∵AB=AC,AE=AF,∴∠B=∠ACB,∠E=∠AFE,∵∠B+∠BAC+∠ACB=180°,∠BAC=∠E+∠AFE,∴∠B+∠ACB

如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,若E为BC中点,ED的延长线交BA的延长线于E,求证AB:BC

题中:求证错误,应为AB:BC=DE:BF,延长线于E,应为F,证明:由△BDC是直角三角形,E是BC的中点,∴DE=BE=CE,∴∠DEB=∠DBE,又∠F+∠DEB=90°,及∠FBD+∠DBE=

如图,△ABC中,AB=AC,在BA延长线上取AE=AF请说明EF与BC的位置如何?

EF和BC的位置关系是EF⊥BC证明:作AD⊥BC因为AE=AF所以∠E=∠AFE因为∠BAC=∠E+∠AFE所以∠E=∠BAC/2因为AB=AC,AD⊥BC所以根据“三线合一”性质得AD平分∠BAC

如图,在四边形ABCD中,BC>BA,AD=CD,BD平分<ABC,试证明<BAD+

从点D向线段BC、AB,做垂线,交AB于点E,交BC于点F因为BD平分∠ABC,所以DE=DF因为直角三角形AD=CD,DE=DF,所以直角三角形AED和三角形CFD全等所以角C=角EAD因为角EAD

如图,在△ABC中,AB=AC,∠C=30°,DA⊥BA于A,若BC=21cm,求CD的长

证明:因为AB=AC所以∠ABC=∠ACB=30°又因为∠BAD=90°所以AD=½BD又在△ABC内∠BAC=180°-∠B-∠C     

如图,在三角形ABC中,BA=BC,角ABC=45度,AH是BC边上的高,E是AH上的一点,

∠BAH=90°-∠ABC=45°∵EH=CH∴∠HEC=∠HCE=45°∴∠BAH=∠HCE又∵BA=BC∴∠BAC=∠BCA∴∠EAC=∠ECA∴EA=EC

如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC

1.过D做BA的垂线,于BA延长线交于N;过D做BC垂线,于BC交于H因为D在∠ABC角平分线上所以DM=DH又因为DA=DC,所以三角形DAM全等于三角形DCH所以∠C=∠MAD因为∠MAD+∠BA

如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,试求∠

当∠BAC=90°时∵BA=BD∴∠BAD=90°-1/2∠B∴∠CAD=1/2∠B∵CA=CE∴∠CAE=1/2∠ACB∴∠DAE=1/2(∠ABC+∠ACB)=45°所以不变(与“AB=AC"的条

如图,在△ABC中,AB=AC,点D在边BC上,且BA=BD,DA=DC,求∠BAC的大小

∵AC=AB=BD,DA=DC∴∠B=∠C∠BDA=∠BAD∠DAC=∠C∵∠BDA=∠DAC+∠C=2∠C∴∠BAD=∠BDA=2∠C∴∠ABC=∠BAD+∠DAC=2∠C+∠C=3∠C∴∠ABC+

已知:如图△ABC中,AB=AC,在BA的延长线上及AC边上分别截取AE=AF.求证:EF ⊥ BC

延长EF交BC于点D∵AB=AC,AE=AF∴∠B=∠C,∠E=∠AFE∴∠B+∠E=∠C+∠AFE∵∠AFE=∠CFD∴∠B+∠E=∠C+∠CFD∴∠BDE=∠FDC∵∠BDE+∠FDC=180°∴