如图,在△abc中,be

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:56:02
如图,在△abc中,be
如图,在△ABC中,D是BC的中点,DE垂直于DF,说明:BE+CF>EF

证明延长ED,使DG=DE,连接CG、FG易得△DEB≌△GCD∴BE=CG∵DE=DG,DF=DF,角EFD=角FDG=90度∴FG=EF∵CF+DG>FG(两边之和大于第三边)GF=BE,FG=E

已知:如图,在△ABC中,以它的边AB,AC分别在形外作等边三角形ABD,ACE,连接BE,CD,求证:BE=CD

三角形ABD,ACE为等边三角形则AB=AD,AE=AC,角CAD=角BAE,三角形ABE与三角形ADC全等,则BE=CD

如图 在锐角三角形ABC中,已知BE、CF分别是△ABC的高.说明△AEF∽△ABC

∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°∵∠A=∠A∴△ABE∽△ACF∴AE/AF=AB/AC∴AE/AB=AF/AC∵∠A=∠A∴△AEF∽△ABC

如图15,已知在三角形ABC中,BE平分角ABC交AC于E,点D在BE延长线上,且BA*BE=BD*BE

条件错了吧,应该是BA*BC=BD*BE,∴BE平分∠ABC,∴∠ABE=∠EBC∵BA*BC=BD*BE∴BA/BD=BE/BA∴△ABD∽△EBC∴∠BCE=∠BDA又∵∠BEC=∠AED∴△AD

如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.

添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:

如图.在△ABC中.BD平分∠ABC.

解;因为三角形的外角等于不相邻的两个内角之和,所以设∠ACB的外角为∠ACE,∠ACE=∠ABC+∠BAC.又因为BD平分∠ABC,所以∠DBC=1/2∠ABC同理:∠ACD=1/2∠ACE=1/2(

如图,在△ABC中,O是高AD和BE的交点.

(1)∵O是高AD和BE的交点,∴∠OEC=∠ODC=90°,∴∠C+∠DOE=180°;∵∠DOE+∠AOE=180°,∴∠AOE=∠C;(2)由(1)可知,如果一个角的两边分别垂直于另一个角的两边

如图,在△ABC中,O是高AD和BE的交点,观察图形……

四边形CDOE内角和为360°∠C+∠DOE+∠CDO+∠CEO=360°∠C+∠DOE+90°+90°=360°∠C+∠DOE=180°

初二全等三角形难题如图  在△ABC中,BE,CF分别是ACAB两边上的高,在BE上截取BD=AC,

证明:(1)因为BE,CF分别是ACAB两边上的高,那么有∠BAC+∠ABD=90°=∠BAC+∠GCA又有BD=AC,CG=AB所以有△ACG≌△DBA所以有AD=AG(2)由于△ACG≌△DBA,

已知:如图,在△ABC中,点D在边BC上,BE平行CF,且BE=CF.求证:AD是△ABC的中线.

我来回答∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD.∵∠BDE=∠CDF,BE=CF,∴△BED≌△CFD.∴BD=CD.∴AD是△ABC的中线.

如图,在△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE于G.

(1)连接DE,因为E是AB中点,AD垂直于BC,所以,DE=BE=AE=CD.因为在三角形EDC中,三线合一,所以DG是高,同时也是中线,所以,G是CE的中点.(2)由(1)可知BE=ED所以,角E

如图,在等腰三角形ABC中,BE,CF是两腰上的高线,

△APQ是等腰三角形∵△ABC为等腰三角形∴AB=AC,∠ABC=∠ACB∵CE,BF是高∴∠BEC=∠CFB=90º在△BEC和△CFB中∠ABC=∠ACB∠BEC=∠CFB=90

如图△ABC中 AB=BC BE

∵AD⊥BC,∠BAD=45°,∴⊿ADB是等腰直角三角形,AD=BD;∵AB=BC,BE⊥AC,∴AE=EC,AC=2AE,∵Rt⊿EBC与Rt⊿DAC有公用锐角∠C,∴∠EBC=∠DAC,可证Rt

如图,在△ABC中,

解题思路:可设P、Q两点运动t秒时,PQ有最小值,则PB=6-t,BQ=2t,根据勾股定理可求解题过程:解:设P、Q两点运动t秒时,PQ有最小值,最终答案:略

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

如图在三角形ABC中,BE,CF分别是AC,AB两边上的高.

证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以

已知:如图,在△ABC中,BE、CF是高,D、G分别是BC、EF的中点

∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明

如图,在△ABC中,DG∥AB,AD/EF=DC/FC,求证:BE∥GF

∵DG∥AB∴AD:DC=BG:GC(平行线分线段成比例)又AD:EF=DC:FC即AD:DC=EF:FC∴BG:GC=EF:FC∴BE∥GF

数学题 如图,在△ABC中,

△BDE与△CEF全等