如图,在△ABC中,D,E,F,分别是AB,AC,BC中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:20:54
连接BE,由于DB=BC,点E是CD中点,所以BE垂直于CD,从而三角形BEA是直角三角形,而F又是AB中点,根据直角三角形斜边的一半等于斜边的中线,得到EF=1/2AB
证明:∵D、E、F分别是△ABC三边的中点,∴DE∥.12AC,EF∥.12AB,∴四边形ADEF为平行四边形. 又∵AC=AB,∴DE=EF.  
(1)证明:AB=AC∴∠B=∠C.在△DBE和△ECF中{BE=CF∠B=∠CBD=EC,∴△DBE≌△ECF(SAS).∴DE=EF.∴DEF是等腰三角形.∠A=40°,∠B=∠C,∴∠B=∠C=
(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DF
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
存在.角BDE=180-角B-角BED角FEC=180-角DEF-角BED因为角B=角DEF所以角BDE=角FEC又因为AB=AC所以角B=角C又因为BD=CE所以根据角边角三角形FEC全等于三角形B
连接OD,半径r=OE=OF=EC=FCFC=AC-AF=b-AFAF=AD=AB-BD=c-BDBD=BE=BC-EC=a-r所以r=b-(c-(a-r))=b-c+a-r从而2r=a+b-c,r=
(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF(垂直于同一直线的两直线互相平行);(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB
(1)证明:因为△ABC是等边三角形,所以AB=BC=CA,∠BAC=∠ACB=∠ABC=60°在△ACE和△BAD中,AB=AC,∠BAC=∠ABC,BD=AE.所以△ACE≌△BAD(SAS)所以
你想学如何发图就找我吧,
de、ef分别是三角形abc的一条中位线,所以de=fa,fe=db.所以cdef的周长=ac+bc.
1、证明:∵等边△ABC∴AB=AC,∠ABC=∠BAC=60∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE∵△ABD≌△CAE∴∠BAD=∠CAE∴∠DFC=∠CAD+∠CAE=∠CAD+∠
∵∠C=180°-(∠F+∠FEC)∠C=180°-(∠A+∠ABC)∴180°-(∠F+∠FEC)=180°-(∠A+∠ABC)∴∠F+∠FEC=∠A+∠ABC∵∠A=∠ABC∴∠F+∠FEC=2∠
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
∵∠C=180°-(∠F+∠FEC)∠C=180°-(∠A+∠ABC)∴180°-(∠F+∠FEC)=180°-(∠A+∠ABC)∴∠F+∠FEC=∠A+∠ABC∵∠A=∠ABC∴∠F+∠FEC=2∠
1.证明三角BDE和CEF全等2.角FEC和角BDE可以转化3.DEF为60°,同2
∵在等边△ABC中∴∠A=∠B=∠C=60°AB=BC=AC∵AD=BE=CF∴AB-AD=BC-BE=AC-CF即BD=CE=AF∵∠A=∠B=∠C=60°AD=BE=CFBD=CE=AF∴△ADF
E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行
(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴四边形AEDF是矩形;(2)∵DE∥AC,DF∥AB,∴∠ADE=∠DAF,四边形AEDF是平行四边形,又∵AD是
(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD=CE∠B=∠CBE=CF∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.由(1)知△BDE≌△CEF,∴∠BDE=∠CEF