如图,在△ABC中,∠B=60°,∠C=45°.若AC=2,则AB的长为( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:09:59
如图,在△ABC中,∠B=60°,∠C=45°.若AC=2,则AB的长为( )
如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B事对应

15°因为CA=C'A,所以,∠C'CA=∠ACC'=45°,而∠AC'B'=30°,所以∠CC'B=15°再问:怎么得出,∠C'CA=∠ACC'=45°的呢再答:因为CA=C'A啊,它是一个等腰直角

如图,在△ABC中,∠A=60°,∠B:∠C=1:5.求∠B的度数.

设∠B=X°,∠C=5X°,根据三角形内角和定理,得∠A+∠B+∠C=180°,∴60°+X°+5X°=180°∴X=20∴∠B=20°

如图.在△ABC中.BD平分∠ABC.

解;因为三角形的外角等于不相邻的两个内角之和,所以设∠ACB的外角为∠ACE,∠ACE=∠ABC+∠BAC.又因为BD平分∠ABC,所以∠DBC=1/2∠ABC同理:∠ACD=1/2∠ACE=1/2(

如图,在△ABC中,点D在BC上,BD=AD=AC,∠BAC=60°,求∠B的度数.

∵BD=AD=AC,∴∠B=∠BAD、∠ADC=∠C,又∵∠ADC=∠B+∠BAD=2∠B,∴∠C=2∠B,在△ABC中,∠B+∠C+∠BAC=180°,即∠B+2∠B+60°=180°,∴∠B=40

已知,如图,在菱形ABCD中,∠BAD=2∠B.求证:△ABC是等边三角形

证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°

如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求∠AOE的度数

∵∠B=60°,∴∠BAC+∠BCA=120°,∵AO、CO分别平分∠BAC、∠BCA,∴∠OAC+∠OCA=1/2(∠BAC+∠BC)=60°,∴∠AOC=120°,∴∠AOE=60°.

如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B=

因为AC=DC则∠CAD=∠CDA又因为∠CDA是CDB的外角则由DC=DC可得∠BCD=∠B=1/2∠CDA由三角形内角和为180°可得∠ACD+∠CAD+∠CDA=180°即∠ACD+2∠CDA=

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在△ABC中,AD⊥BC,∠1=∠B,试说明△ABC为直角三角形

根据你的描述,我可以知道你的∠1指的是∠DAC,对么?如果是,则因为AD⊥BC所以∠ADC=90°,所以∠DAC+∠ACD=180°-∠ADC=90°,即∠1+∠ACD=90°,因为∠1=∠B,所以∠

1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD

在AC上取点F,使AF=AE∵AD是角A的平分线∴角EAO=角FAE∵AO=AO∴三角形AEO与AFO全等(两边夹角相等)∴EO=FO,角AOE=角AOF∵CE是角C的平分线∴角DCO=角FCO∵角B

数学几何题(全等)如图,在△ABC中∠ABC=60°.

在AC上取AF=AE,连接OF,则△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=12(180°-∠B)=60°则∠AOC=180°-

已知,如图,在△ABC中,CD是△ABC的角平分线,∠A=2∠B

证明:在BC上取一点E,使得CE=AC因为CD=CD,角ACD=角DCE所以三角形ACD全等于三角形ECD所以AD=DE,角A=角DEC因为角DEC=角B+角BDE,角A=2角B所以角B=角BDE所以

已知 如图 在△ABC中,AD⊥BC,∠1=∠B,求证:△ABC为直角三角形

由AD⊥BC,∠B=∠1=∠CAD,(1)∴△ABD中,∠B+∠BAD=90°,(2)将(1)代入(2)得:∠1+∠BAD=∠BAC=90°,∴△ABC是直角三角形.

如图,已知在等腰△ABC中,∠A=∠B=30°.

(1)作出CD,               &n

如图,在△ABC中,∠A等于60°,∠B=45°,AB=8.求△ABC的面积

1.作CD⊥AB,垂足为DAD=CD/tan60°=√3/3CDDB=CD/tan45°=CDAD+DB=AB=(1+√3/3)CD=8S=AB•CD/2=16(3-√3)2.∠DAC=∠

如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,△ABC以C为中心旋转到△A’B‘C的位置,顶点B在

∵△ABC以C为中心旋转到△A’B‘C的位置∴△ABC≌△A’B‘C∴∠B'=∠ABC=60°BC=B'C∴⊿BCB'是等边三角形∴∠BCB'=60°∴∠A'CB=30°∴∠BDC=180-°60°-

如图,在△ABC中,∠B=60°.AD,CE分别是△ABC的角平分线,求证:AE+DC=AC.

因为AD,CE分别是△ABC的角平分线,所以∠AOC=90°+1/2∠B=120°,所以∠COD=180°-∠AOC=60°,过点O作OF=OD,所以可以证明△COD全等于△COF,所以∠COF=∠C

如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.

证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE(等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD和△AED中,∠CAD=∠EAD∠C=∠AEDAD

如图,在Rt△ABC中,∠B=90°,BC>AB.

(1)如图;(2)BD=DE;理由:过P作PF⊥BD于F,则四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,∠ADB=