如图,在△ABC中,点o为bc中点,点M为AB上一点,ON⊥OM交AC于N
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:58:29
连接oe,af两个相似的直角三角形立现,oc=3,oe=1,算出ec,问题就解决了
求啥啊再问:判断直线PQ与圆O的位置关系。,给了,做不出就别说话哦再答:1,连接cpbc直径所以△BCP是直角三角形△ACP也是直角三角形又因为PQ是△ACP的中线所以PQ=CQ∠QCP=∠QPC又因
(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=
(1)连接OE,OD,在△ABC中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6;∵以O为圆心的⊙O分别与AC,BC相切于点D,E,∴四边形OECD是正方形,tan∠B=tan∠AOD=ADO
依题意易得△ABC为等腰直角三角形.连接AO.因为O是BC的中点.所以AO=1/2BC=BO=COAO=BO(S)∠OAN=∠B=45(A)BM=AN(S)根据SAS,△OBM全等于△OAN.所以MO
∵∠ACO=∠ADO=90,AO为∠BAC的平分线,AO=AO∴△AOC≌△AOD∴AD=AC=6,DO=CO△OBD的周长=OD+OB+BD=12△ABC的周长=AC+BC+AB=AC+(CO+BO
(1)相切;证:OD=OA,所以角ODA=角A=30度;所以角COD=60度;因为D在中点,所以CD=AD;所以角OCD=角A=30度;所以角ODC=90度;所以OD垂直于CD,得证.(2)有正弦定理
LZ,你题目打错了吧、、、、易得BD=DO,OE=EC,因为周长为12,所以BC=BD+DE+EC=OD+OE+DE=12
你题目数据有问题吧?等腰三角形ABC,当O为BC中点时最小,所以OA的最小值不可能可能是1的.再问:AB=AC=根号5
1)连CO,DO,EO,设圆O的半径为r,因为AC+BC=8,AC=2所以BC=6△ACO面积=(1/2)*AC*OD=r,△BCO面积=(1/2)*BC*OE=3r,△ABC面积=(1/2)*AC*
(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC;(2)∵∠ABC=70°,∠ADB=90°,∴∠BAD=20°,∴BD的度数为40°,∵AB=A
AB=AC=√5,BC=4=>cos∠ABC=(BC/2)/AB=2/√5OB=x,=>OA^2=AB^2+OB^2-2AB*OB*cos∠ABC=5+x^2-4x=>cos∠OAB=(AB^2+OA
1楼诱导了,什么相似形,跟那不牵扯.∵,∠ABC和∠ACB的角平分线相交于点O∴∠EBO=∠OBC,∠FCO=∠OCB∵EF‖BC∴∠EOB=∠OBC,∠FOC=∠OCB∴BE=EO,CF=OF∴△A
以AB为直径的半圆?请在检查下你的问题.
(1)证明:连接OE,∵BC与⊙O相切于点E,∴OE⊥BC,即∠OEB=90°.∴∠OEB=∠ACB=90°.∴OE∥AC.∴∠F=∠OED.∵OE=OD,∴∠ODE=∠OED.∴∠F=∠ODE=∠A
解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠
如图.①辅助线:连接CD.∵AC=直径BC.∴等腰△ACB.又∵BC是⊙O直径.∴CD⊥AB.∴CD是△ACB的中线(很据等腰三角形三线合一定理).∴BD=AD.②辅助线:连接OD.∵OD,OB是⊙O
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即