如图,在三角形ABC内有一点P,在BA,BC边上各取一点P1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:57:11
如图,在三角形ABC内有一点P,在BA,BC边上各取一点P1
在平行四边形ABCD内有一点P,三角形ABC的面积是10三角形PCD的面积是7,求三角形PAB的面积?

10=S⊿ABC=S﹙ABCD﹚/2=S⊿BCDS⊿PBC=S⊿BCD-S⊿PCD=10-7=3

在三角形abc中,∠b等于90度,ab等于5,bc等于12,ac等于13.三角形abc内是否有一点p到各边的距离相等?

存在,我们假设P向ABC三边做垂线垂足是Q,R,S分别在AB,BC,CA上.现在PQ=PR=PS.由勾股定理,我们可以计算得出AQ=AS,BQ=BR,CR=CS.那么结合PQ=PR=PS,出现了三组全

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

如图:三角形ABC为等边三角形,边长为2.1:在平面内找一点P,使得三角形PAB、三角形PBC、三角形PAC均为等腰三角

距离最大你算错了,该是2+2*根号3吧,距离最小就是P10P6,P10P6=AP6-AP10=AP6-(2/3)AF=AP6-(2/3)AB*sin60=2-(2/3)*2*(2分之根号3)=2-3分

请问如图三角形ABC内有一点P,过P做个边的平行线,把三角形分成三个三角形和三个平行四边形.(连接下面)

显然三角形S1,S2,S3和△ABC相似而S1=S2,知DP=PE=BH=GC,AF=FD,AI=IE所以四边形AFPI=2又S3=2S1,BH=DP,PE=GC记S3的高为h,S1的高为g则h=√2

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,在△ABC中,∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P到各边的距离相等,这个距离是?

斜边是:根号(7^2+24^2)=25,设该距离是x由面积相等得:1/2*7*24=1/2*(7+24+25)*xx=3

如图2,三角形ABC中,有一点P在AC上移动,若AB=AC=5,BC=6,试求AP+BP+CP的最小值

∵AP+CP=AC=5,∴要使AP+BP+CP取得最小值,只需要BP取得最小值就可以了.显然,当BP是△ABC的高时,BP最小.下面证明这一结论:在AC上任取一个不与P重合的点Q,则△BPQ是一个以B

如图,在正△ABC内有一点P,PA=10,PB=8,PC=6,求∠BPC的度数

把△BPC绕点C顺时针旋转60°至△ACD∵△ACD是由△BPC顺时针旋转60°而得∴△ACD≌△BPC∴∠BPC=∠ADC,PC=CD,BP=AD∵∠PCD=60º∴△PCD是等边三角形∴

如图 等边三角形ABC内有一点P,PE垂直于AC

证明:连接PA,PB,PC则S△ABC=S△PAB+S△PBC+S△PAC∵S△PAB=1/2AB*PES△PBC=1/2BC*PDS△PAC=1/2AC*PFS△ABC=1/2BC*AH∴1/2AB

在三角形ABC所在的平面内有一点P,满足向量PC=2向量AP,则三角形PBC与三角形ABC的面积之比是

因为PC和AP是向量,所以很容易看出来P在AC上,所以三角形PBC的面积是三角形ABC面积的1/3

如图1,P是三角形ABC内一点,连接PA、PB、PC,在三角形PAB、三角形PBC和三角形PAC中

你好!(1)由直角三角形斜边上的中线等于斜边的一半得到BD=CD,所以∠DBC=∠DCB,又因为∠BEC=∠ACB=90°,所以△BEC∽△ACB,(2)由相似三角形及p是三角形自相似点,得到∠B+∠

如图所示,三角形ABC内有一点P,且CP=BC,连接AP、BP,求证AB>AP

延长AP交BC于点D(三角形两边之和大于第三边)∴AB+BD>AP+PD①PD+DC>PC②①+②:AB+BD+DC+PD>AP+PC+PD即AB+BD+DC>AP+PC∴AB+BC>AP+PC∵CP

已知:如图7-4,三角形ABC.求做:点p,使得点P在三角形ABC内,且到三边AB,BC,CA的距离相等 作法:

作三边的垂直平分线交于点P,即所求再问:垂直平分线?什么意思

已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,

本题是在一道经典习题基础上衍化出来的,那道习题是说等边三角形内的任意一点到等边三角形三边的距离之和为定值,定值等于已知等边三角形的高.如图①,P是⊿ABC内部的一点,PD⊥BC,PE⊥AC,PF⊥AB

如图,在等边三角形ABC内有一点P,PA=10,PB=8,PC=6,求∠BPC的度数(提示:利用旋转)

∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵把△BPA绕点B顺时针旋转60°得到△BDC,连结DC,如图,∴BP=BD=8,∠PBD=60°,DP=AP=10,∴△PBE为等边三角形,∴

如图1,三角形ABC中,角ACB=30度,BC=6,AC=5,在三角形ABC那边有一点P,连接PA PB PC,求PA+

c^2=a^2+b^2-2abcosC=36+25-30√3=9.04所以c=3.0066因为a/sinA=b/sinB=c/sinC=6.013可得sinA=0.998,sinB=0.832所以三个