如图,在半圆O中,E是弧AC的中点,且ED=4,弦AC=16,则直径AB= .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:08:39
1可证三角形OEA全等于三角形OCF所以S四边形AEOF=S三角形OCF+S三角形OFA所以S四边形AEOF=二分之一R平方第二题还要想想明天再说
连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠
图呢?再问:图再答:楼上的解答中有个问题,∠B=∠C没有问题,但是∠B=∠C不等于(180°-∠BAC)。连接OD,弧AD度数为80,则∠AOD=80°;OA=OD,则∠OAD=∠ODA=50°.AB
1.连接AD.则有∠ADB=90°(直径所对的圆周角)即AD⊥BC因为AB=AC所以BD=BC(等腰三角形底边上的高是底边的平分线)2.等腰三角形底边上的高是顶角的角平分线∠BAC=40°,所以∠BA
1.连接OD,CDBC为圆O直径,∠BDC是BC所对的圆周角∴∠BDC=90°CD⊥AB,∠ADC=∠BDC=90°OD,OC都是圆O半径∴OD=OC于是,在等腰△OCD中,∠ODC=∠BCDDE切圆
∵∠B=90°,BD为直径,∴BC是⊙O的切线,∵AC切⊙O于E,∴CE=BC=6,连接OE,则OE⊥AC,∵∠AEO=∠B=90°,∠A=∠A,∴ΔAEO∽ΔABC,∴OE/BC=AE/AB,3/6
这题确实有点难.(1)较容易,就是两角相等证相似(一直径所对直角一等弧所对圆周角).(2)就稍难些了.在△BCD中用勾股定理求出BD的长,再证△ABE相似于△DBC,得AB:BD=BE:BC,再比例变
(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC;(2)∵∠ABC=70°,∠ADB=90°,∴∠BAD=20°,∴BD的度数为40°,∵AB=A
再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢
(1)∵A是弧BC的中点,∴AB=AC,连接OB、OA、OC,∵在△AOB和△AOC中,AB=ACOB=OAOA=OC,∴△AOB≌△AOC(SSS),∴∠CAO=∠ABO,∵AD=CE,∴AB-AD
证:(1)因点D、E为均为圆O上的两点,所以OD=OE,因此△ODE为等边三角形故∠ODE=∠OED,又∠ADO=∠PED=90°那么∠ADO+∠ODE=∠OED+∠DEP,即∠ADE=∠AEP;又由
以AB为直径的半圆?请在检查下你的问题.
连接OE,∵AB、AC为切线,∴OD⊥AB,OE⊥AC,又∠A=90°,∴四边形ADOE是矩形,又OD=OE,∴四边形ADOE是正方形.∴半径OD=OE=AD=3,∵∠C=∠BOD,而tan∠BOD=
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D
连接BC,AD,根据直径所对的圆周角是直角,得∠C=∠D=90°,根据相交弦定理,得AE?CE=DE?EB∴AE?AC+BE?BD=AC2-AC?CE+BD2-BD?DE=100-BC2+100-AD
证明:∵弧AD=弧CD∴∠ABD=∠CBD∵DH⊥AB∴∠ABD+∠HDB=90∵直径AB∴∠ACB=90∴∠CBD+∠CEB=90∴∠HDB=∠CEB∵∠CEB=∠AED∴∠AED=∠HDB∴DF=
三角形ODE的形状是等边三角形CE=2圆中,0A=0D=0E=OB∠OAD=∠ODA,∠OEB=∠OBE根据四边形内角和∠ODC+∠OEC+∠C+∠DOE=360°180-∠ODA+180-∠OEB+
O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,