如图,在半圆O中,E是弧AC的中点,且ED=4,弦AC=16,则直径AB= .

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:08:39
如图,在半圆O中,E是弧AC的中点,且ED=4,弦AC=16,则直径AB= .
已知如图,在半径为R的半圆O中,半径OA⊥直径BC,点E和点F分别在AB、AC上滑动,且保持AE=CF,但点F不与AC重

1可证三角形OEA全等于三角形OCF所以S四边形AEOF=S三角形OCF+S三角形OFA所以S四边形AEOF=二分之一R平方第二题还要想想明天再说

如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半

连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠

如图,在△ABC中,AB=AC,以AC为半径的半圆O交AB,BC于D,E,弧AD的度数为80° 求∠B和弧DE的度数.2

图呢?再问:图再答:楼上的解答中有个问题,∠B=∠C没有问题,但是∠B=∠C不等于(180°-∠BAC)。连接OD,弧AD度数为80,则∠AOD=80°;OA=OD,则∠OAD=∠ODA=50°.AB

如图,在三角形ABC中,AB=AC,以腰AB为直径画半圆O,分别交BC,AC于点D,E.

1.连接AD.则有∠ADB=90°(直径所对的圆周角)即AD⊥BC因为AB=AC所以BD=BC(等腰三角形底边上的高是底边的平分线)2.等腰三角形底边上的高是顶角的角平分线∠BAC=40°,所以∠BA

已知,如图,在三角形ABC中,AB等于AC,以BC为直径的圆的半圆O于边AB相交于点D,切线DE垂直于AC,垂足为点E.

1.连接OD,CDBC为圆O直径,∠BDC是BC所对的圆周角∴∠BDC=90°CD⊥AB,∠ADC=∠BDC=90°OD,OC都是圆O半径∴OD=OC于是,在等腰△OCD中,∠ODC=∠BCDDE切圆

如图在rt三角形abc中角b等于90度,D为AB上的一点,以BD直径的半圆O与AC相切与点E,BD=BC=6,求斜边AC

∵∠B=90°,BD为直径,∴BC是⊙O的切线,∵AC切⊙O于E,∴CE=BC=6,连接OE,则OE⊥AC,∵∠AEO=∠B=90°,∠A=∠A,∴ΔAEO∽ΔABC,∴OE/BC=AE/AB,3/6

18、已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.

这题确实有点难.(1)较容易,就是两角相等证相似(一直径所对直角一等弧所对圆周角).(2)就稍难些了.在△BCD中用勾股定理求出BD的长,再证△ABE相似于△DBC,得AB:BD=BE:BC,再比例变

如图,在△ABC中,AB=AC,以腰AB为直径画半圆O,分别交BC,AC于点D,E;

(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC;(2)∵∠ABC=70°,∠ADB=90°,∴∠BAD=20°,∴BD的度数为40°,∵AB=A

已知,如图,在三角形ABC中,AB=AC。以腰AB为直径作半圆O,分别交BC,AC于点D,E 问

 再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢

已知点A、B、C是半径长为2的半圆O上的三个点,其中点A是弧BC的中点(如图),联结AB、AC,点D、E分别在弦AB、A

(1)∵A是弧BC的中点,∴AB=AC,连接OB、OA、OC,∵在△AOB和△AOC中,AB=ACOB=OAOA=OC,∴△AOB≌△AOC(SSS),∴∠CAO=∠ABO,∵AD=CE,∴AB-AD

如图,在△ABC中,点O是边AC上一点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交AB的

证:(1)因点D、E为均为圆O上的两点,所以OD=OE,因此△ODE为等边三角形故∠ODE=∠OED,又∠ADO=∠PED=90°那么∠ADO+∠ODE=∠OED+∠DEP,即∠ADE=∠AEP;又由

如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.

连接OE,∵AB、AC为切线,∴OD⊥AB,OE⊥AC,又∠A=90°,∴四边形ADOE是矩形,又OD=OE,∴四边形ADOE是正方形.∴半径OD=OE=AD=3,∵∠C=∠BOD,而tan∠BOD=

如图,在△ABC中,AB=AC,以AC为直径的半圆O分别交AB、BC于点D、E.

(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D

如图,在圆O中,直径AB=10,C、D是上半圆AB上的两个动点.弦AC与BD交于点E,则AE?AC+BE?BD=____

连接BC,AD,根据直径所对的圆周角是直角,得∠C=∠D=90°,根据相交弦定理,得AE?CE=DE?EB∴AE?AC+BE?BD=AC2-AC?CE+BD2-BD?DE=100-BC2+100-AD

如图,AB是半圆O的直径,C是半圆上的一点,弧AD=弧CD,DH垂直于AB,H为垂足,AC分别交BD、DH于点E、F.

证明:∵弧AD=弧CD∴∠ABD=∠CBD∵DH⊥AB∴∠ABD+∠HDB=90∵直径AB∴∠ACB=90∴∠CBD+∠CEB=90∴∠HDB=∠CEB∵∠CEB=∠AED∴∠AED=∠HDB∴DF=

如图,在三角形ABC中,角C=60度,以AB为直径的半圆O分别交AC、BC于点D、E

三角形ODE的形状是等边三角形CE=2圆中,0A=0D=0E=OB∠OAD=∠ODA,∠OEB=∠OBE根据四边形内角和∠ODC+∠OEC+∠C+∠DOE=360°180-∠ODA+180-∠OEB+

如图,在三角形ABC中,∠C=60,以AB为直径的半圆O分别与AC边,BC边交于点D,E

O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,