如图,在扇形OAB中,OA垂直OB分别以OA,OB为直径向扇形内作半圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:17:33
如图,在扇形OAB中,OA垂直OB分别以OA,OB为直径向扇形内作半圆
(2013•平顶山二模)如图,在扇形OAB中,∠AOB=90°,半径OA=6.将沿过点B的直线折叠,点O恰好落AB

连接OD,由折叠的性质可得OB=BD,∵OB=OD(都为半径),∴OB=OD=BD,∴△OBD为等边三角形,∴∠DBO=60°,∴∠CBO=∠CBD=12∠OBD=30°(折叠的性质),在Rt△OBC

如图,扇形OAB的圆心角为90°,分别以OA、OB为直径在扇形内作半圆,P和Q分别表示两个阴影部分,试判定P与Q面积的大

∵扇形OAB的圆心角为90°,假设扇形半径为a,∴扇形面积为:90×π×a2360=πa24,半圆面积为:12×π×(a2)2=πa28,∴SQ+SM=SM+SP=πa28,∴SQ=SP,即P与Q面积

如图,在扇形OAB中,半径OA=4,∠AOB=90°,BC=2AC,点P是OA上的任意一点,求PB+PC的最小值.

先作点C关于直线OA的对称点C′,连接BC′,则BC′的长即为PB+PC的最小值,再过点O作OD⊥BC于点D,连接OC′,∵BC=2AC,∠AOB=90°,∴AC=30°,∴∠AOC′=30°,∴∠B

如图,沿OA将圆锥侧面剪开,展开成平面图形后是扇形OAB.

(1)扇形的弧长等于其围成的圆锥的底面周长,点A与点B在圆锥的侧面上重合;(2)∵圆锥的弧长等于底面的周长,∴2πr=90πR180即:R=4r;(3)连接AB,则AB即为最短距离;∵r2=0.5∴r

如图:扇形OAB的圆心角∠AOB=120°,半径OA=6cm,

(1)如图所示:(2)扇形的圆心角是120°,半径为6cm,则扇形的弧长是:nπr180=120•π•6180=4π则圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π

如图,半径为1cm,圆心角为90度的扇形oab中,分别以oa,ob为直径作半圆,则图中阴影部分面积为

该图中的弦AB外侧的两个小阴影圆弧与O点附近的空白圆弧的面积相等(可以用全等证明),那么把阴影的圆弧移动到空白处,则可获得一个完整的等腰直角三角形阴影,所以该图中的阴影部分面积S=1*1*1/2=1/

如图,在平面直角坐标系中,O为坐标原点,等腰△OAB的底边OB在X轴正半轴上 OA=AB∠OAB=120°

第一问AB所在的解析式为y=-√3/3X+2√3,B是在X轴上也就是Y=0所以-√3/3X+2√3=0解得X=6,所以B的坐标是(6,0)也就是0B=6∠OAB=120°根据等腰三角形的性质,∠AOB

在扇形OAB中,半径OA=8cm,弧AB=12,则角AOB=____弧度,扇形OAB的面积

圆心角的弧度数=弧长/半径,因此角AOB=12/8=1.5弧度.填:1.5.而扇形的面积=1/2*弧长*半径=1/2*12*8=48cm^2.

如图,在扇形OAB中,⊙O1分别与AB、OA、OB切于点C、D、E,∠AOB=60°,⊙O的面积为4π,若用此扇形做一个

∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=12∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l)

如图,OAB是杠杆,OA与BA垂直,在OA的中点挂一个10N的重物,加在B点的动力使OA在水平位置保持静止(杠杆重力及摩

(1)因无法确定动力臂的大小,所以无法确定它是哪种杠杆,故A和B错误;(2)加在B点的动力F与OB垂直向上时,动力作用线和杠杆垂直,支点与动力作用点之间的连线OB就是最长的动力臂,此时动力最小.因为C

如图,在扇形OAB中,圆O1分别于弧AB,OA,OB切于点C,D,E,∠AOB=60°,圆O1的面积是4π,用这个扇形做

∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=1/2∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l

如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,把Rt△OAB沿x轴正方

(1)由题意可知,A(1,0),A1(2,0),B1(2,1),设以A为顶点的抛物线的解析式为y=a(x-1)2;∵此抛物线过点B1(2,1),∴1=a(2-1)2,∴a=1,∴抛物线的解析式为y=(

如图,在⊙O中,半径OA=4,弦AB=4√2,用扇形OAB做一个圆锥的侧面,求这个圆锥的全面积

OA=OB=4,AB=4√2根据勾股定理逆定理OA²+OB²=AB²所以∠AOB=90扇形圆心角为90度,根据母线长L和圆锥底面半径R的关系R/L=90/360,R=L/

如图,在扇形OAB中,半径OA=4,∠AOB=90°,弧BC的度数是弧AC的的2倍,点P是OA上的任一点,求PB+PC的

如图,弧BC的度数是弧AC的的2倍,即有∠BOC=2∠AOC而∠AOB=90°,所以∠BOC=60°、∠AOC=30°做C点关于OA的对称点D,连接BD,显然BD的长度是PB+PC的最小值∠BOD=1

如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交

连接OD,教CB于点H,OD为半径,所以OD=6.三角形OBC与CBD全等,所以OH=HD=3.在直角三角形中根据勾股定理可得HB=3√3.又三角形CHD与BHD相似,所以根据等比三角形的性质可得CD

如图,在扇形OAB中,∠AOB=90°,半径=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA

周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90

如图,扇形OAB中,∠AOB=90°,半径OA=1,C是弧线段AB的中点,CD垂直OB,CE垂直OA,垂足分别为D,E,

你确定问的是CD不是ED?我都告诉你吧将其补成整个圆延长BD交另一弧于F相交弦定理得FDxBD=CD^2即(1+OD)(1-OD)=CD^2=OD^2CD=OD等于2分之根号2所以ED=1

如图,扇形OAB中,圆心角AOB=90°E为AB中点,且EF‖OB,若OA=4,则图中阴影部分面积为

3分之8丌一3分之6倍根号3=约等于4.91思路:连OF=4,延长FE交AO于C,易知FC=OF的平方-OC平方,开方,FC=2倍根号3,EO=2,FE=2根号3-2,AE=2倍根号2,角AEF=13