如图,已知ABCD是圆O上的四点,∠APC=∠CPB=60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:04:14
如图,已知ABCD是圆O上的四点,∠APC=∠CPB=60度
已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ABCD是正方形

AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠

已知如图在平行四边形ABCD中,E,F分别是BC和AD上的点,且AE∥FC,求证:EF过BD的中点O.

∵ABCD是平行四边形∴AD∥BC,AD=BC∵AE∥FC,AF∥EC∴AECF是平行四边形∴AF=EC∴AD-AF=BC-EC那么DF=BE∵BE∥DF∴∠EBO=∠FDO∠BEO=∠DFO△BOE

如图,矩形ABCD的四个顶点都在圆O上,已知圆O的半径是4,求矩形的最大面积

设X,Y分别为矩形两边长,则x2+y2=64,设矩形面积z=xy,则下面图片,x2为x的平方,其他后面的2都是平方,丫丫的.公式太恶心人了,答案是32,你自己做吧..这点应该会吧..

如图,已知正方体ABCD-A1B1C1D1中,O是底面ABCD对角线的交点.

1设顶面A1B1C1D1的中心(即对角线的交点,类似于O点)为点01.连接A和点O1.易证,AOC1O1为平行四边形,所以线A01平行于线C1O由于线A01属于面AB1D1,而A01平行于C1O所以C

已知:如图,MN是圆O的直径,四边形ABCD、CEFG是正方形,A、D、F在圆O上,B、C、G在直线MN上,S正方形CE

⊙O的半径为根号5,可以这样设正方形ABCD的边长为2x,则OC=x,CD=2x,设⊙O半径为r连接OD、OF,则DO=OF=r,由正方形CEFG的面积是4,可得它的边长是2,即CG=FG=2在Rt△

如图,已知矩形ABCD内接于圆O,圆O的半径为4,AB=4,将矩形ABCD绕点O逆时针旋转.

因为A,B,C,D四点共圆且矩形的对角线相等并且互相平分,即OA=OB=OC=OD,无论怎么绕着O点旋转,结果仍然四点在圆上且为矩形,形状大小都不变.因为0A=0B=AB=4,由勾股定理求出AD=BC

已知,如图,四边形ABCD中.AC、BD交于点O.E、F是AC上的点.且AF=CE.求证:四边形BFDE是平行四边形

证明:连接BF、FD、DE、EB.因为:ABCD是平行四边形.O是对角线AC、BD交点.所以:AO=CO.又因为:E,F是直线AC上的两点,并且AF=CE.AF-AO=CE-OC、所以:EO=FO.(

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD

(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相

已知,如图,四边形ABCD的四个顶点都在圆O上,求证AC*BD=AB*CD+AD*BC

证明:在AC上取一点E,使∠AED=∠BCD∵A,B,C,D四点共圆∴∠DAC=∠DBC∴⊿DAE∽⊿DBC(AA‘)∴AD/BD=AE/BC∴AD×BC=BD×AE.①∵∠DEC=180º

已知如图,四边形ABCD是矩形,对角线AC,BD相交于O,求证点ABCD在以O为圆心的圆上

证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A

数学圆和直线如图,已知矩形ABCD中,AB=2,BC=二根号三,O是AC上一点,AO=m,且圆O的半径长为1.求NO.1

过O做OE垂直AB则有三角形相似可得OE/BC=AO/ACAO=m,BC=2√3AC由勾股定理=4所以OE=2√3m/4=√3m/2没有公共点,所以√3m/2>r=1m>2√3/3O在AC上,所以OA

如图,ABCD与EFGC都是正方形,B、C、G都在圆O的直径HI上,A、D、F都在圆O上,已知正方形EFGC的面积是16

设OC长为x,则半径为√5在三角形OGF中使用勾股定理即可得OF=4√5

如图:在正方形ABCD内有一个圆,圆心O到正方形各边的距离相等,E是圆O上的一点

连接正方形对角线AC、BD,分别交圆O为E、F、G、H,即要找的点.示意图……就不画了吧~

如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:

证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.      

如图,已知点O是正方形ABCD的重心

这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相

如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,且已知VP-ABCD=

因为正四棱锥的底面是正方形,且四个顶点都在圆周上.任何一个四个定点在圆周上的矩形若为正方形,那么这个正方形的顶点一定在大圆上,也就是说正方形的对角线即为直径.再问:还是不明白,球的任何一个切面上都可以

如图,在正方形abcd中,o是边cd上一点,以o为圆心...

设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC

已知,如图O是正方形ABCD的中心,

(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(

如图,已知四边形ABCD内接于直径为3的圆O

AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/