如图,已知bp为△abc的角平分线,cd为△ABC的外角角ace的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:57:05
因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB
证明:连接MP,BM∵MP垂直AB∴AP²+MP²=AM²=MC²(勾股定理和中点AM=MC)∵MC²+BC²=MB²=MP
证明:延长BP,交AC于E,∵AD平分∠BAC,BP⊥AD,∴∠BAP=∠EAP,∠APB=∠APE,又∵AP=AP,∴△ABP≌△AEP,∴BP=PE,AE=AB,∠AEB=∠ABE,∴BE=BP+
证明:∵∠ACE是三角形ABC的外角∴∠ACE=∠A+∠ABC又∵BP和CP是∠ABC与∠ACE的角平分线∴∠ABP=∠2,∠ACP=∠PCE根据题意可知∠PCE=∠2+∠P∴∠ACE=∠A+∠ABC
∵∠1=0.5∠DBC=0.5(180°-∠ABC),∠2=0.5∠ECB=0.5(180°-∠ACB)∴∠BPC=180°-(∠1+∠2)=180°-【0.5(180°-∠ABC)+0.5(180°
因为∠A=64°,∠ABC+ ∠ACB=180°-64°=116°∠EBC=180°-∠ABC ∠BCF=180°-∠BCF所以∠EBC+∠BCF=360°-(∠ABC
证明:过点P分别过点P作PD⊥AM于D,PE⊥BC于E,PF⊥AN于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(到角两边距离相等的点
过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC
∠A=50,所以∠ABC+∠ACB=130∠ACP=1/2(180-∠ACB)=90-∠ACB/2∠P=180-∠PBC-(∠ACB+∠ACP)因为∠PBC=∠ABC/2所以∠P=180-∠ABC/2
分析与思路:要证BP=CP,就是要证∠CBP=∠BCP;要证∠CBP=∠BCP,就是要证,△ABC全等于△DCB,而这是已知条件,故BP=CP.另一方面,要证AP=DP,就是要证AC-CP=BD-BP
证明:∵AB=AC,AD是中线,∴AD⊥BC,∴AD垂直平分BC,∴ΔAPB≌ΔAPC,∴BP=CP,∠AB=∠ACP,∵AB∥CF,∴∠F=∠ABP,∴∠ACP=∠F,又∠CPF=∠CPF,∴ΔPC
在AC上截取AE=AB,连接PE,可以知道三角形ABP全等于三角形AEP,所以BP=PE,BE=2BP,进而推出三角形ABE为等边三角形,角ABE=60度=角AEB,AC-AB=EC=BE=2BP,角
延长BP交AC于E,AD是∠BAC的平分线,BP⊥AD,∴△ABE是等腰三角形,AB=AE,BP=EP,∠ABE=∠AEB∴BE=BP+EP=2BP,又EC=AC-AE=AC-AB=2BP∴△EBC是
连接DC∵△ABC是等边三角形∴∠ACB=60°AB=AC=BC∴AB=BP∴BP=BC在△BDP和△BDC中BP=BCBD=BD∠DBP=∠DBC∴△BDP≌△BDC∴DP=DC∠DCB=∠BPD=
过P点分别作AE\AD\BC\的垂线段,垂足分别为XYZ因为BP平公角CBD,所以PY=PZ,(角平分线的性质)同理可得PX=PZ得PX=PY=PZ,则AP平分∠BAC,(角平分线的性质逆定理)
证:PG为BC的⊥平分线,:∠PCB=∠PBC=2\1∠A.所以:∠CPB=180-∠A又:∠DPE=∠CPB,故∠DPE=180-∠A,可知A、E、P、D四点共圆.由正弦定理分别有:BE:sin∠E
证明:因为∠A的平分线AD交BC于D,BP⊥AD,所以△ABE为等腰三角形,所以AE=AB设∠AEB=z度,∠EBC=y度,∠C=x度,则∠ABC=3x度于是z=x+y,z=3x-y整理得x=y,则B
证明:过点P分别作AM、BC、AN的垂线PE、PF、PD,E、F、D为垂足,∵CP是∠MCB的平分线,∴PE=PD.同理:PF=PD.∴PE=PF.∴点P在∠BAC的平分线上.
∠BPC=90-∠A/2∵∠DBC=180-∠ABC,BP平分∠CBD∴∠PBC=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2∵∠BCE=180-∠ACB,CP平分∠BCE∴∠PCB=∠
证明:在DC上取DB′=DB,连接PB′,AB′交PC于E点,由轴对称可知,PB′=PB,AB′=AB,由三角形三边关系定理,得AB+PC=AB′+PC=AE+EB′+PE+EC>PB′+AC=PB+