如图,已知E.F分别为正方形ABCD边AB.BC的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:03:59
如图,已知E.F分别为正方形ABCD边AB.BC的中点
如图,已知正方形ABCD的边长为1,E,F分别为AD,BC的中点,把正方形沿对角线AC折起直二面角,

过E作EG⊥AC于G,∵E是AD中点,则AG=AC/4,连FG∴FG²=5/8∵⊿ADC⊥⊿ABC∴EG⊥FG∵正方形ABCD的边长为1,则AC=√2在RT⊿EFG中EG=√2/4∴EF&#

如图,已知点P为正方形ABCD上一点,PE⊥BC,PF⊥CD,垂足分别为E,F,求证:PA=EF

是这道题吧P为正方形ABCD的对角线BD上一点PE⊥BC,PF⊥CD,垂足分别为E,F,求证:PA=EF证明:∵PE⊥BC,PF⊥CD,∠C=90°∴四边形PECF为矩形,连接PC,则PC=EF又∵A

如图,已知正方形ABCD的边长为a,AC与BD交与点E,过点E做FG∥AB,分别交AD,BC于点F,G,

连结DG,过B作BH⊥DG交DG的延长线于H设此圆半径为r,可以看到BE=√2a/2=r并且容易知道BH〈BG〈BE=r,由此得出DG所在直线必然与圆相交(BH=r则相切,BH〉r则相离)

如图,已知正方形ABCD的边长为a,AC与BD交与点E,过点E做FG∥AB,分别交AD,BC于点F,G

点B到AC、FG、DC的距离分别为BE=√2·a/2=rBG=a/2<rBC=a>r∴以点B为圆心,以a√2/2为半径的圆与直线AC相切,与FG相交,与DC相离再问:还能具体到步骤吗?再答:∵ABCD

如图,已知正方形ABCD的边长为1,点E、F分别在边BC、CD上运动,但保持∠EAF=45°,当EF=4/5时,求S△A

⊿ABE绕A旋转90º到达⊿ADG,⊿AFE≌⊿AFG(SAS)FG=FE=4/5设DG=xFD=4/5-xCF=x+1/5CE=1-x∴(x+1/5)²+(1(-x)²

如图,已知正方形ABCD中,E,F分别为边CD,DA上的点,且CE=DF,AE与BF相交于点G

∵正方形∴AB=ADAD=DC∵CE=DF∴AF=DE∠baf=∠ade=90所以△ABF全等△DAE所以△ABF∽△DAE(2)△ABF、△DAE、△AGF

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

已知 如图,在正方形ABCD中,P是CD上一点,DE⊥AP,垂足分别为E、F.求证:AE=DF

因为ABCD为正方形,所以AB=AD,∠BAD=∠BAE+FAD=90度.因为DE⊥AP,垂足分别为E、F,所以∠AFD=AEB=90度,所以∠FDA+∠FAD=90度.所以∠ADF=∠BAE.因为∠

已知,如图,正方形ABCD的边长为1,等边△CEF的顶点E、F分别在AD、AB边上求△CEF的边长

由直角三角形HL(斜边与直角边)可知:Rt△CDE≌Rt△CBF∴DE=BF设EA=AF=x;DE=y∴x+y=12x²=y²+1联立消元,得2x²=(1-x)²

如图,已知P是正方形ABCD对角线BD上一点,PE垂直DC,PF垂直BC,E,F分别为垂足.

(1)连接PC,因为两边和一个夹角均相等,所以三角形APD与CPD全等.AP=PC=10而PE垂直DC,PF垂直BC,PF=EC=8(勾股定理).(2)不管P在哪里,都满足AP^2=PE^2+PF^2

已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

如图,正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,

证明:∵CE⊥BF,垂足为M,∴∠MBC+∠MCB=∠BEC+∠MCB,∴∠MBC=∠BEC又∵AD∥BC,∴∠MBC=∠AFB∴∠AFB=∠BEC,又∵∠BAF=∠EBC,AB=BC,∴Rt△BAF

如图,已知正方形ABCD的边长为a,AC与BD交于点E,过点E作FG∥AB,且分别交AD、BC于点F、G.问:以B为圆心

∵四边形ABCD是正方形,∴EA=EB=EC=ED,AC⊥BD,∠ABC=∠BCD=90°,∵FG∥AB,∴BG=GC=12BC=12a,AF=DF=12a,∠EGB=90°,在Rt△ABE中,由勾股

如图,已知正方形ABCD的边长为a,AC,BD交与点E,过点E做FG∥AB,分别交AD,BC于点F,G,问以点B为圆心,

确认:题中所给半径是:a√2/2.①⊙B与AC相切.∵BE=½{√(a²+a²)}=a√2/2=半径,        且BE⊥AC(正方形对角线相互垂直平分).②⊙B与F

已知边长为1的正方形ABCD中,点E,F分别在边BC,CD上1如图1,若AE⊥BF

顺时针旋转ADF90度至ABF'(AD与AB重合),连接EF,易证EF=EF',勾股定理易求BE=1/2设DF=xEF^2=EF'^2=(1/2+x)^2=(1-1/2)^2+(1-x)^2x=1/3

 已知:如图,正方形ABCD,AC、BD相交于点O,E、F分别

按题意,可知OM应为CE的一半.如果假设M无限接近于B点,则E也将无限接近于B点,此时OM趋于CE/√2,③并不成立所以你确定题目或答案都没弄错?要是你确定题目没错,那么要敢于质疑参考答案的正确性.因

已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.

证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG

如图,在四面体ABCD中,已知所有棱长都为a,点E、F分别是AB、CD的中点

⑴CE⊥AB,DE⊥AB(三合一),AB⊥CED,AB⊥FE.同理,CD⊥EFEF是两异面直线AB与CD的公垂线.⑵EF²=CE²-CF²=(3/4)a²-a&

如图,已知正方形abcd边长为4,对角线ac、bd交于o点,e、f分别是边ab、bc上两点(与a、b、c不重合),且oe

oe垂直于of,所以∠eof=90°,又正方形对角线互相垂直,所以∠boc=90°∠eob+∠bof=∠bof+∠foc=90°所以∠eob=∠foc同时∠abo=∠ocb=45°ab=bc所以三角形