如图,已知o是直线ef上一点,∠aob等于90°,oe平分∠cob

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:14:15
如图,已知o是直线ef上一点,∠aob等于90°,oe平分∠cob
如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点

证明:连接AB,则∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°

如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B

开始移动时,x=30°,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠POF=2∠ABC=2×30°=60°,故x的取值范围是

如图,已知直线AB,CD,EF相交于一点O,∠1=25°,∠BOD=90°,求∠2的度数

不知道你的图啥样,但估计应该是∠2=90°-25°=65°如图

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,C为圆O上一点,且AC平分角PAE 若AD:DC=1:3 求圆O

半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2

已知如图O是直线AB上的一点角AOC=角BOD射线OE平分角BOC角EOD=42度求角EOC的大小

∵OE平分∠BOC∴∠EOC=∠BOE=1/2∠BOC∴∠BOC=2∠BOE=2(∠BOD+∠EOD)=2∠BOD+2×42°=2∠BOD+84°∵∠AOC+∠BOC=180°∠AOC=∠BOD∴∠B

如图,已知点O为直线AB上一点,OM、ON分别是∠AOC、∠BOC的平分线.求∠MON的度数.

/>因为:OM平分角AOC,所以:角AOM=角MOC因为:ON平分角BOC,所以:角CON=角BON所以:2角CON+2角MOC=180度,即:2角MON=180度所以:角MON=90度

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为(  )

连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60

如图,已知直线EF分别与AB,CD分别相交于点K,H,点G是直线AB上的一点,点E是直线EF上一点,连接EG,若AB∥

证明:易得∠DHE=∠CHF=60°(对顶角相等)∵AB∥CD∴∠EKG=∠DHF=60°∴∠EGK=180°-(∠EKG+∠KEG)=180°-90°=90°故△EKG是直角三角形.//------

如图,已知O是直线AD上的一点,∠AOB、BOC、∠COD三个角从小到大依次相差25°,求这三个角的度数.

因为∠AOB、BOC、∠COD三个角从小到大依次相差25°,求这三个角的度数.所以∠BOC=∠AOB+25°,∠COD=∠AOB+50°∠AOB+∠BOC+∠COD=180°所以∠AOB=35°,∠B

如图,已知点O是直线AB上一点,角COE等于90°,OF是角AOE的平分线.

图一:(1)当点C,E,F在直线AB的同侧:简要说明:作∠BOE的角平分线OG;由已知OF平分∠AOE;可得∠FOG=90;则:∠COE=∠COF+∠FOE=90=∠FOE+∠EOG,所以:∠COF=

如图,已知点O是直线AB上的一点,角COE=90度,OF是角AOE的平分线

分析:(1)设∠COF=α,则∠EOF=90°-α,根据角平分线性质求出∠AOF、∠AOC、推出∠BOE即可;(2)设∠AOC=β,求出∠AOF,推出∠COF、∠BOE、即可推出答案;(3)根据∠DO

如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC,

三角形AEF全等于三角形DCE,所以AF等于DE,所以AF等于4cm

如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.

证明:因为EF⊥EC,所以∠AEF+∠DEC=90°,又因为∠AEF+∠AFE=90°,所以∠DEC=∠AFE在△AEF和△DCE中,∠EAF=∠CDE,∠AFE=∠DEC,EF=EC,所以△AEF全

如图(↓),已知,O为直线AB上一点,OC是任一条射线,OD、OE分别是∠AOC和∠COB的平分线

(1)∵∠AOB为平角,为180°,∠BOC+∠AOC=180°,180°-∠BOC=108°.∴∠COD=108°/2=54°∠EOC:因为OE是∠COD的平分线,∴∠EOC=72°/2=36°.(

已知:如图,在Rt△ABC中,∠BAC=90°,D是AC上一点,∠ABD=∠C,直线EF过点D,且EF⊥BC,垂足为E,

∠FAD=∠DEB∴要使△ADF∽△EDB有2种情况1∠BDE=∠ADF∵∠ADF=∠EDC∴∠BDE=∠EDC∵FE⊥BC∴∠DBE=∠C=∠ABD∵∠DBE+∠C+∠ABD=90°∴∠C=30°k

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A