如图,已知在△abc中,角 C等于90度,AD平分角BAC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:06:30
如图,已知在△abc中,角 C等于90度,AD平分角BAC
如图,已知在△ABC中,点C在AC上,点B在AE上,△ABC全等△DBE,且角BDA=∠A,若∠A:∠C=5:3,则∠D

∵△ABC≌△DBE∴∠A=∠BDE,∠C=∠E∵∠BDA=∠A∴∠ADE=∠BDE+∠BDA=2∠A∵∠A+∠ADE+∠E=180°∴3∠A+∠C=180°∵∠A:∠C=5:3∴∠A=50°,∠C=

如图,已知Rt△ABC中,角C=90°,AC=4cm

设D在AC上,E在AB上连接BD∴AD=BD设CD=X那么BD=AC-CD=4-X∴BC²+CD²=BD²3²+X²=(4-X)²X=7/8

已知,如图,在△ABC中,AB

∵AC=8,C△ABE=14,    ∴AB+AE+BE=14    ∵DE垂直平分BC  &nbs

已知如图在△ABC中∠C=90用直尺和圆规作△ABC的高CD,角平分线AE,    CD,

∠CFE=∠CAF+∠ACD=∠CAF+(90°-2∠CAF)=90°-∠CAF在三角形CAE中∠CEF=90°-∠CAF

已知如图在△ABC中∠C=90用直尺和圆规作△ABC的高CD,角平分线AE,

∠CFE=∠CAF+∠ACD=∠CAF+(90°-2∠CAF)=90°-∠CAF在△CAE中∠CEF=90°-∠CAF再问:哪复制、黏贴的-_-再答:其实你问一遍就可以的,初一的知识,实在是.....

如图,已知三角形ABC中,D在BC上,E在AC上,角B=角C

解题思路:根据等腰三角形三线合一的性质可得∠DAC=1/2∠BAC=20,∠ADC=90从而可得∠CDE解题过程:

已知:如图,在Rt△ABC中,角C=90°,BC=4 AC=8急!

de=x,Δade与Δabc相似,ae/8=x/4,ae=2x,ce=8-2xy=x*(8-2x)=8x-2x^2(0

已知:如图,在△ABC中,O是∠B,∠C外角的平分线的交点,那么点O在角A的平分线上吗

在.0是△ABC的旁心.相关证明利用两次角平分线性质定理就能推导出来,加油吧.

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

如图,已知在直角三角形ABC中,在角C=90°

是真命题.AB=2BC, ∠A=∠C-∠B=30°.∠C=90°所以三角形ABC是直角三角形.再问:�ش�̫�

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图,在钝角△ABC中,已知三条边a,b,c和三个角A,B,C,证明:a=bcosC+ccosB.

证明:在钝角△ABC中,由A+B+C=π,可得sinA=sin(B+C),∴sinA=sinBcosC+cosBsinC,∴2R•sinA=2R•sinBcosC+2R•cosBsinC(R为△ABC

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

已知,在三角形ABC中,角C=90°,AC=4,BC=3.如图2,圆O1与圆O2是三角形ABC内互相外切的两个等圆,求这

(12-r)/20=2r/3r=36/37再问:为什么再答:O1O2C与BCA相似,O1O2/BC=O1C/ACO1O2=2rO1C=(4*3)/5-r=(12-5r)/5(12-5r)/20=2r/

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB

如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.

∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C