如图,抛物线y=1x2-2x 3与x轴交于a.b两点,与y轴交于点c,顶点为d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:54:22
如图,抛物线y=1x2-2x 3与x轴交于a.b两点,与y轴交于点c,顶点为d
已知抛物线y^2=2px的焦点为F点p1(x1,y1)p2(x2,y2)p3(x3,y3)在抛物线上且2x2=x1+x3

是这题吗?已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有(C)  A.|FP1|+|FP2|=|FP3|

谁会用MATLAB遗传算法求函数y=(x2+1)/x1+x3^2*x2+x3^2+x3*x2的极小值

下载个GAOToolbox工具箱,很简单就实现了

如图,OB是矩形OABC的对角线,抛物线y=-1/3x2+x+6经过B、C两点,

(1)由C的横坐标为0,知C(0,6)(用抛物线的方程),而B与C纵坐标相同,求知B(3,6)(2)由OD=5,OE=2EB知D(0,5),E(2,4);F在直线DE上且纵坐标为0,得F(10,0).

已知A(x1,y1),B(x2,y2),C(x3,y3)是抛物线y^2=2x上三点,若三角形ABC的重心是(3,-1)

因为重心是(3,-1)所以x1+x2+x3=9y1+y2+y3=-3……式1用y^2=2x消去x得y1^2+y2^2+y3^2=18……式2式1俩边平方得(y1+y2+y3)^2=9y1^2+y2^2

如图,已知抛物线y=-1/2x2+x+4交x轴的正半轴于点A,交y轴于点B.

(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

如图,已知抛物线y= 1 2 x2+bx与直线y=2x交于点O(0,0),A

题不完整,不知是否如下题:如图,已知抛物线y=½x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点

已知曲线f(x)=x3+x2+x+3在x= -1处的切线恰好与抛物线y^2=2px(p>0)相切 求抛物线方程和切点坐标

f(x)=x3+x2+x+3f'(x)=3x^2+2x+1在x=-1处的切线斜率=2x=-1f(x)=2(-1,2)切线方程y-2=2(x+1)=2x+2y=2x+4带入y^2=2px4x^2+16x

如图,过抛物线x2=4y焦点的直线依次交抛物线与圆x2+(y-1)2=1于点A、B、C、D,则|AB|×|CD|的值是(

方法一:特殊化,抛物线x2=4y的焦点是F(0,1),取过焦点的直线y=1,依次交抛物线与圆x2+(y-1)2=1的点是A(-2,1)、B(-1,1)、C(1,1)、D(2,1),∴|AB|×|CD|

如图,已知抛物线y=- 1 2 x2+x+4交x轴的正半轴于点A,交y轴于点B.

(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/

如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).

1直线y=x+m经过点A(1,0),即0=1+m,m=-1抛物线y=x2+bx+c都经过点A(1,0),B(3,2).即0=1^2+b+c2=3^2+3*b+cb=-3,c=2即y=x2-3x+2x>

如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L1向右

L2:y=-(x+1)(x-3)=-x²+2x+3P(x0,y0)y0=-x0²-2x0+3P关于原点的对称点Q(x,y)x=-x0y=-y0-y=-x²+2x+3y=x

已知抛物线y=x2-(k+1)x+k 1)试求k为何值时,抛物线与x轴只有一个公共点; 2)如图,若抛物线与X轴交于A、

1)当抛物线与X轴只有一个公共点,即只有一个交点,即顶点坐标为(X,0).可以根据已知条件,将系数代入顶点坐标公式计算.因为已经知道Y=0,所以直接代入Y的坐标可以得到一条二元一次方程式.4K-(K+

(2013•长春一模)如图,抛物线y=x2,y=12x

∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴

如图已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式;

1.将点(1,-5)和(-2,4)带入抛物线y=x2+bx+c,则有-5=1+b+c和4=4-2b+c,求出b=-2,c=-4带入得出抛物线的解析式:y=x2-2x-42.设N点为(x1,y1),M点

如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式; (2)设此抛物线与直

简单说明一下.由于△BOM的面积等于ab乘以其高,所以只要求出抛物线在上述(第二题)条件下离AB最远的点即可.问题就转换为只要求一条平行于AB(斜率相同)、与抛物线有且只有一个交点的线(如果有两个交点

线性代数的题,如图.已知两个基α1= x3+2x2-x β1=2x3+x2+1α2=x3-x2+x+1 β2=x2+2x

(α1,α2,α3,α4)=(1,x,x^2,x^3)A,其中A=0111-11102-12-1311-1-1(β1,β2,β3,β4)=(1,x,x^2,x^3)B,其中B=122202111113