如图,正方形ABCD边长为8,M在BC上,BM等于2,N为AC上的一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:30:19
①∵BF=BC+CF,BC=4,CF=8,∴BF=12;∴S△BFG=12GF•BF=48;又S△ABD=12AB•AD=8,∴S阴影=S正方形ABCD+S正方形ECFG-S△BFG-S△ABD=16
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
因为正方形ABCD的边长为8cm,CE为20cm所以DE=12cm因为是正方形所以AD//BC△EFD相似△EBCFD:DC=DE:CEFD:8=12:20FD=4.8cm所以S梯形BFCD=1/2(
1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P
再问:对称中心是什么?再答:
(π(派)-2)/2
1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1
“w472”:正方形的面积=a²空白的半圆部份面积=(0.5a)²×3.14÷2=0.3925a²空白的三角形部份面积=a²-a²×3.14÷4=a&
【推荐方法:】其实,连接CF,因为∠BFP=45°,∠ANP=45°,所以PF∥AN,△ANB和△ANF同底等高,面积相等,等于大正方形面积的一半.12×12÷2=144÷2=72平方厘米小正方形的边
(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
a=根号8=2·根号2a的相反数为-2·根号2再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。再问:计算下列各式
(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
正方形ABCD的边长为4,正方形ECFG的边长为8所以两个正方形的面积和为16+64=80阴影部分的面积为两个正方形的面积和-两个三角形80-48-8=24 &nbs
设图中下面两线段长分别为x,y,则x+y=8阴影部分的面积是=1/2*x*8+1/2*y*8-S(ABCD)=1/2*(x+y)*8-6=26
三角形的另一面积公式S△=1/2absinc,其中c是a、b边的夹角.S△BPC=1/2*1*1*sin60°=(根号3)/4,S△PDC=1/2*CD*h=1/2*1*1/2=1/4(其中h为CD边
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2