如图,点D与点E分别是△ABC的边长BC.AC的中点,且S三角形等于6

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:13:13
如图,点D与点E分别是△ABC的边长BC.AC的中点,且S三角形等于6
.如图,⊿ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.

(1)因为⊿ABC是等边三角形所以AB=BC,∠ABC=∠C=∠BAC=60°又因为BD=CE所以△ABD≌△BCE(SAS)(2)⊿AEF与⊿ABE相似理由:由(1)知:∠BAD=∠CBE,∠BAD

如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F

∵△ABC是等边三角形∴AB=BC,∠ABD=∠BCE=60°∵BD=CE∴⊿ABD≌⊿BCE﹙SAS﹚再问:是证这两个三角形相似不是证全等再答:全等一定相似

如图,△ABC是等边三角形,点D,E分别是BC.AC上的点,且AE=CD,AD与BE交于点为F

易证△ABE≌△CAD,从而∠AEB=∠CDA,于是∠CDF+∠CEF=∠AEB+∠CEF=180°∴D、C、E、F四点共圆∴∠BFD=∠C又△ABC是等边三角形,∠C=60°∴∠BFD=60°再问:

如图,△ABC是等边三角形,点D,E分别是BC.AC上的点,且AE=CD,AD与BE交于点为F.

证明:(1)∵已知△ABC是等边三角形,AE=CD∴AB=AC,∠BAC=∠C=60°∴在△ABE与△CAD中,有AB=AC,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(2)由(1)中△ABE≌

如图(1),△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点

证明∵∠A+∠ADA′+∠DA′E+∠A′EA=360°(四边形内角和)∴∠A+∠DA′E=360°-∠ADA′-∠A′EA∵∠BDA′+∠ADA′=180°,又∵∠CEA′+∠A′EA=180°∴∠

如图,点D、E、F分别是△ABC各边的中点 猜想中线AD与中位线EF存在怎样的特殊关系?

互相平分,证明:连接ED,∵ED是△ABC的中位线,F是AC中点.∴ED平行且等于1/2AC=AF(三角形中位线平行于底边且等于底边一半)同理可得:FD平行且等于1/2AB=AE,∴四边形AEDF是平

如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F

(1)因为等边三角形ABC所以AB=BC,∠ABD=∠BCE因为BD=CE,∠ABD=∠BCE,AB=BC所以△ABD≌△BCE(2)因为△ABD≌△BCE所以∠BAD=∠CBE因为∠BAC=∠CBA

如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.

(1)证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵BD=CE,∴△ABD≌△BCE.(2)△BDF∽△ADB.理由如下:∵△ABD≌△BCE(已证).∴∠

如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,

(1)△DEF是等边三角形.证明如下:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,(2分)∴△ADF≌△BED≌△CFE,(3分)∴DF=D

如图已知△abc是等边三角形,点D,E分别在BC,AC边上,切AE=CD,AD与BE相交于点E,BG⊥AD于点G. FG

(1)证明:因为三角形ABC是等边三角形所以AB=AC角BAE=角ACD=60度因为AE=CD所以三角形ABE和三角形CAD全等(SAS)(2)因为三角形ABE和三角形CAD全等(已证)所以角ABE=

如图,已知△ABC,AC=BC=6,角C=90°,O是AB中点,圆O与AC BC分别相切于点D与点E点F是圆O与AB一个

连接OD因为AC与圆O相切所以OD⊥AC因为∠C=90°,AC⊥BC,OA=OB所以OD//BC,OD=BC/2=3所以OF=OD=3,∠ODF=∠BGF,∠DOF=∠GBF因为∠OFD=∠BFG所以

如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P……

∵正△ABC∴AB=AC∠BAC=∠C又∵AD=CE∴△ABD≌△CAE∴∠ABD=∠CAE∴∠APD=∠ABP+∠PAB=∠BAC=60°∴∠BPF=∠APD=60°∵Rt△BFP中∠PBF=30°

如图,在△ABC中,D是AC上一点,E、F分别是AB、BC上的点

延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由

已知:如图 △ABC是等边三角形 点D、E分别在边BC、AC上 且BD=CE AD与BE相交于点F

证明:(1)∵AB=BC,∠ABD=∠C=60°,BD=CE∴△ABD≌△BCE(2)由(1)△ABD≌△BCE得∠BAD=∠CBE∠FAE=60°-∠BAD=60°-∠CBE=∠ABE∠AFE=∠A

如图(1)(2)(3),点e,d分别是正三角形abc,正四边形abcm,正五边形abcmn中以c点为顶点的一边的延长线与

(1)∵在△BEF中,∠AFB是外角,∴∠AFB=∠AEB+∠FEB∵∠FBE=∠CBD        (对顶角);∠FEB=∠BDC        (已知条件有△ABE≌△BCD)∵在△BCD中,∠

如图,在三角形ABC中,AB=AC,点D、E分别是

1,三角形ABE全等于三角形ACD2,三角形BCD全等于三角形CBE3,三角形BFD全等于三角形CFE选第一组证明:因为一,AB=AC(已知)二,角A为公共角三,D,E分别为AB,AC的中点,所以AD

如图,在三角形ABC中,点D,E分别是AB,AC边上的点

∠B的同位角是∠ADE,同旁内角是∠ACB,∠B+∠BDE的度数是180度再问:同位角和同旁内角都只有一对吗还有后面一题的过程谢谢!!表示超急再答:恩,同旁内角因为是关于相连的3条线的,有两对,∠AD

如图,在三角形ABC中,D,E分别是AB,AC上的点

然后呢再问:且AD=31,DB=29,AE=了30,EC=32,找出角1角2角3角4中相等的角再答:等一下我算一哈再问:嗯,谢谢再答:角1234分别在哪里啊,再答:你截图给我看看初一的题目吧,再问:在

如图,△DEF是△ABC经过某种变换得到的图形.点A与点D,点B与点E,点C与点F分别是对应点

(1)A(2,3)D(-2,-3)B(1,2)E(-1,-2)C(3,1)F(-1,-3)对应点的坐标互为相反数(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,那么