如图,点EFGH分别在菱形ABCD的四条边上,且BE=BF=DG=DH

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:55:58
如图,点EFGH分别在菱形ABCD的四条边上,且BE=BF=DG=DH
如图,在平行四边形ABCD中,EFGH各点分别在AB,BC,CD,DA

你的辅助线连得很对.∵ABCD是平行四边形∴AB=CD∴∠D=∠B∵AE=BF=CG=DH∴DG=DC-CG=AB-AE=EB∴ΔDHG≌ΔBFE(SAS)∴HG=EF(全等三角形对应边相等)同理HE

已知:如图,点E、F、G、H分别在菱形ABCD的各边上,AE=AH=CF=CG求证:四边形EFGH是矩形

证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF∴EH=GF在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-

如图,EFGH分别为正方形ABCD的边AB,BC、cd、da上的点,

设边长=1,AE=BF=CG=DH=1/3ED=√10/3小正方形边长=√10/3-1/√10-1/3√10=√10/5小正方形面积=10/25=2/5阴影部分的面积与正方形ABCD的面积之比为=2/

如图,在四边形ABCD中,EFGH分别是AB BC CD DA的中点

证明:连接AC、BD因为EFGH是中点所以:EH=FG=1/2*BDHG=EF=1/2*AC(三角形中位线)对边分别相等,这个图形是平行四边形再问:我们还没学到中位线,可以用其他方法吗?再答:中三绝不

在空间四边形ABCD中,E·F·G·H分别是AB·BC·CD·DA上的点,且EFGH为菱形,若AC平行于平面EFGH(接

您的问题,在这里是找不到答案的.平时要仔细认真,这才是解决问题的法宝

如图,已知四边形ABCD是菱形,E,F,G,H,分别是AB,AD,CD,BC的中点 求证:四边形EFGH是矩形.

证明:因为ABCD是菱形,所以AB=DA,BC=CD且AC垂直BD,又因为EFGH为其各边中点,所以EF∥=AC∥=GH;EH∥=BD∥=FG;∠ABD+∠BAC=90,所以∠FEH=90,所以四边形

已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,AH=

当DG=2时,求△FCG的面积 S△FCG=4 设DG=x,用含x的代数式表示△FCG的面积 S△FCG=6-x 证明: 过F,做M⊥DC于M&nbs

已知:如图,顺次连接矩形ABCD各点中点得到四边形EFGH,求证:四边形EFGH是菱形.

连结AC,由E、F为中点可EF为中位线,则EF=1/2AC,同理GH=1/2AC,FG=1/2BD,EH=1/2BD;由矩形ABCD可知对角线相等,即AC=BD,从而得到EF=GH=FG=EH,所以四

如图1,矩形ABCD中,BC=10,点F在AB上,且AF=5,BF=3,菱形EFGH的顶点E、G分别是矩形ABCD的边A

第一题:AE=3,因为⊿AEF≌⊿BCF,第2题AE=4.2,此时第一题⊿AEF≌⊿CGH,设AE=X,EF=√25+X平方,DE=10-X,又因为⊿DEH≌⊿BGH,DH=3,EH=√9+(10-X

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形

已经可以证明EFGH是平行四边形GH=1/2ADEF=1/2ADGH=EFGF=1/2BCEH=1/2BCGF=EHEFGH是平行四边形只需要满足BC=AD就可以使得GH=EF=GF=EH

如图,在矩形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是菱形.

证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B

如图,菱形ABCD中,点E,F,G,H分别在AB,BC,CD,DA上,且AE=AH=BF=DG=x,设四边形EFGH的面

连接EG,FH由图易得等腰梯形EFGHEG=HG所以FH^2=HG^2+FG^2-2HGxFGxcos角HGF   EG^2=EH^2+HG^2-2xHGxEHxcos角

已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上

(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠A

如图四边形ABCD中.E,F,G,H,分别是AB,BC,CD,DA的中点.且对角线AC=BD,求证:四边形EFGH是菱形

证明:∵E是AB中点,F是BC中点∴EF是△ABC的中位线∴EF=1/2AC同理可得FG=1/2BD,HG=1/2AC,EH=1/2BD∵AC=BD∴EF=FG=GH=HE∴四边形EFGH是菱形

如图所示,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA上的一点,且EFGH为菱形,如AC‖平面EF

因为AC‖平面EFGH,且AC与EF共面所以AC‖EF同理BD‖EH因为AC‖EF所以BE:AB=EF:AC所以BE=AB*EF/AC=AB*EF/m因为BD‖EH所以AE:AB=EH:BD所以AE=

如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上

话说应该是先求证:△AED≌△DFB,然后再求证△CDG≌△CBG'吧?先证明△AED≌△DFB:因为ABCD是菱形,所以AB=AD=BD=DC=BC,所以△ABD和△DCB是全等的等边三角形.所以角

如图,点E F G H分别是线段AB BC CD AD的中点,当四边形DBCA满足什么条件时,四边形EFGH是菱形?

提示:由中位线定理,EF平行且等于AC的一半,GH也平行等于AC的一半,所以EF平行且等于GH,因此EFGH是平行四边形,要使平行四边形EFGH为菱形,只需要临边相等,而临边分别等于原四边形对角线的一

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD