如图,点M.N在四边形ABCD的对角线AC上,AM=CN,BM DN
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:44:07
证明:∵四边形ABCD是菱形∴AB=ADAB//CDAD//BC∵BM=DN∴AM=AN∵MG//ADNF//AB∴MG//AD//BC∴NF//AB//CD∴MG=AD=BC∴NF=AB=CD∴四边
按题意,点M应在AB上、点N应在CD上.已知BP=3/5BD、 PC=2/3AC,则有:BP=1.5PD、 PC=2AP.得:S△ABP=1.5S△APD,S△DPC=2S△APD
在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD原题是这样的吧!童鞋,请不要重复发帖子啊!浪费时间!证明:连结BM,DM在Rt△ABC中,点M是斜边AC的
因为ABCD是平行四边形,所以AB//DC,AB=DC,因为AE=CF,所以BE=DF,所以四边形BFDE是平行四边形(一组对边平行且相等的四形是平行四边形),所以DE//FB,DE=FB,(平行四边
∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,S△ABD=S△BCD,∴△ABN∽△MDN,∴DN:BN=DM:AB,∵点M是CD的中点,∴AB=2DM,∴S△AND:S△ABN=1:2,
将三角形DCN绕点D顺时针旋转,使得CD与AD重合.设点N的新位置为点P.因为角A+角C=180度,所以P在直线AB上.三角形DMN与三角形DMP全等(三边对应相等),所以角MDN是角ADC的一半.(
旋转的过程中S三角形是S⊿FMN吗?如果是,MN=√10,A到MN的距离=3/√10﹙用MN的法线式﹚3/√10-2√2≤高≤3/√10+2√2S⊿FMN最小值=﹙1/2﹚×√10×﹙3/√10-2√
∵点P,M,N分别是AB,AC,BD的中点∴PM=(1/2)BC,PN=(1/2)AD,∵AD=BC∴PM=PN∴三角形PNM为等腰三角形∠PMN=∠PNM
证明:连接A,C连接B,D交AC于O点,令AC与MO的交点为S∵AD=AB,DC=BC,AC=AC∴∠AOD=∠AOB=90°∵M,N.P,Q分别是AB,BC,CD,DA的中点∴MQ‖BD,QP‖AC
因为ABCD是平行四边形,∴AB=CD,AB∥CD∵AE=CF,AB∥CD∴BE=DF,BE∥DF∴DEBF是平行四边形∴DE=BF,DE∥DF∵M.N分别是DE.BF的中点,DE∥DF∴ME=NF,
手机答题,字数限制.第一题:证明三角形ABN全等三角形DCM得AN=CM.又因为AM=NC.所以ANCM为平行四边行第2题:证明三角形AED全等三角形CFB得BF=DE.NF=ME再证明三角形AEN和
证明:∵四边形ABCD和CEFG都是正方形∴AD//BC,GF//CE∵点B.C.E在同一直线上∴AD//GF∴∠NAM=∠GFM,∠ANM=∠FGM又∵AM=FM∴⊿AMN≌⊿FMG(AAS)∴AN
自己画图,延长NE至G,使得MG=ME有直角三角形AEB,AM=BM,所以AM=mE=MG所以三角形AGE为直角三角形又因角AEG=CEN,同一个弦AD对应的角相等ACN=ABD又ABD+BAE=90
四边形KLMN是平行四边形.∵四边形ABCD是平行四边形.∴AD=BC,AB=CD,∠A=∠C,∠B=∠D∵AK=CM,BL=DN,∴BK=DM,CL=AN∴△AKN≌△CML,△BKL≌△DMN∴K
证明:连接AC取AC中点P,∵M,N分别是AD,BC的中点∴NP‖AB,PM‖CD,NP=AB/2,PM=CD/2∠PMN=∠NFC,∠PNM=∠BEN∵AB=CD∴NP=PM∴∠PNM=PMN∴∠B
在直角三角形ABD中,M是斜边BD的中点,所以,AM=1/2BD在直角三角形BCD中,M是斜边BD的中点,所以,CM=1/2BD于是,AM=CM由于O是AC的中点,也是MN的中点,那么在四边形AMCN
四边形ABCD、四边形DEBF都是矩形,AB=BF∴∠ABC=∠EBF=90°,AB=DE即∠ABM+∠MBN=∠MBN+∠FBC∴∠ABE=∠FBC即∠ABM=∠FBN在RT△ABM和RT△FBN中
四边形BMDN为平行四边形.理由如下:连BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD. ∵AM=CN,∴OA-AM=OC-CN,即OM=ON.∴四边形BMDN为
抄错了吧,应该还有CE=BE.连结AC.S△ADF=S△ACF、S△ACE=S△ABE所以,S△ACE=S△ABE=n-m四边形ABCD面积=2m+(2n-m)=2n.再问:补充一下:CE=2EB,现