如图,点o是等边△ABC内一点,连接OAOBOC,∠ADC全等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:07:39
如图,点o是等边△ABC内一点,连接OAOBOC,∠ADC全等于
(2013•黄冈二模)如图,等边△ABC内接于⊙O,P是劣弧AB上一点(不与A、B重合),将△PBC绕C点顺时针旋转60

①∵将△PBC绕C点顺时针旋转60°,∴∠PCD=60°,PC=CD,AD=PB,∠CAD=∠CBP,∵∠PBC+∠PAC=180°,∠DAC+∠PAC=180°,∴P,A,D在一条直线上,∴△PCD

如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.(提

连接CE,∵△ABC是等边三角形,∴AC=BC,在△BCE与△ACE中,AC=BCAE=BECE=CE,∴△BCE≌△ACE(SSS),∴∠BCE=∠ACE=30°∵BE平分∠DBC,∴∠DBE=∠C

如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点

(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM∥BP,∴∠BPC=∠PCM=60°,∴△PCM为等边三角形;(2)∵△ABC是等

如图,点O是等边△ABC内的一点,∠AOB=1100 ,∠BOC=1350,试问:(1)以OA、OB、OC为边能否构成一

你学过旋转了么?(1)把△ABC绕A点转60度,使B转动后与C重合,O点转动后的点叫O'.因为AO=AO',∠AOO'=60°,所以三角形AOO'是等边三角形.所以OO'=OA.转动后O'C=OB,所

如图,P为等边△ABC内任意一点,连接PA、PB、PC,求证:

解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A

如图,点O为等边△ABC内一点,∠AOB=110°,∠BOC=135°.试问:(1)以OA、OB、OC为边,能

以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD(∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵BC=AC,OC=CD∴△BCO≌△ACD(SAS)∴OB=AD

如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接

(1)∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°∴OC=OD则△COD是等边三角形;(2)△AOD为直角三角形.∵△COD是等边三角形.∴∠ODC=60

如图,点o是等边△ABC内一点,∠AOB=110°,∠BOC=a,以OC为边作等边△OCD,连接AD.试说明△BOC≌△

∵⊿ABC与⊿COD都是等边三角形,∴∠ACB=∠OCD=60度,∴∠ACB-∠OCA=∠OCD-∠OCA,即∠BCO=∠ACD,又BC=AC,OC=DC,∴⊿BOC≌⊿ADC

如图,点O是△ABC内的一点,证明:OA+OB+OC>12(AB+BC+CA)

证明:∵△ABO中,OA+OB>AB,同理,OA+OC>CA,OB+OC>BC.∴2(OA+OB+OC)>AB+BC+CA,∴OA+OB+OC>12(AB+BC+CA).

如图,点O是等边△ABC内一点,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD,求证:△COD是等边三角形.

已知△ADC为△BOC按顺时针方向旋转60°所得,所以OC=DC,∟OCD=60°,由此可证:△COD是等边三角形

(2012•包河区二模)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋

(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针

急,在线等.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=∠a,△OCD是等边三角形,连接AD.

1.角ACD+角ACO=60度,角BCO+角ACO=60度所以ACD=BCO又因为BC=AC,OC=DC所以边角边三角形BOCADC全等所以角ADC=角BOC=角a2.角ADC=150度,角ODC=6

如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBA,求∠BDE的度数

连结CE,延长CE交于AB上的G点∵AE=BE,AC=BCCE=CE∴△BEC≌△ACE∴∠ACE=∠ECB∵AC=BC∵∠BAC=∠ABC=60°∴△AGC≌△BGC∴∠BGC=∠AGC∴∠BGC=

如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数

连接CE,∵AC=BC,AE=BE,CE为公共边,∴△BCE≌△ACE,∴∠BCE=∠ACE=30°又BD=AC=BC,∠DBE=∠CBE,BE为公共边,∴△BDE≌△BCE,∴∠BDE=∠BCE=3

如图,O是等边△ABC内一点,∠AOB=110°,∠BOC=a,点D是△ABC外一点,且△ADC≌△BOC,连接OD

1,因为三角形ABC是等边三角形,所以角ACB=60度又因为三角形ADC全等于三角形BOC,所以角OCB=DCA所以角OCD=角OCA+角ACD=角OCB+角OCA=角ACB=60度因为全等,所以OC

如图,△ABC是等边三角形,O为△ABC内的任意一点,OE‖AB,OF‖AC,分别交BC于点E、F.三角形OEF是等边三

是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形

如图,等边△ABC内接于⊙O,点P是劣弧BC上一点(端点除外),延长BP至D,使BD=AP,连接CD,请判断△PDC 是

(1)如图①,△PDC为等边三角形.理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵AP过圆心O,AB=AC,∠BAC=60°

如图,点O为等边△ABC内一点,∠AOB=110°,∠BOC=135°.试问:(1)以OA、OB、OC为边,能否构成三角

以C点为圆心CM长为半径做圆交FM于一点N则CN=CM角CNM=角CMN所以角BME=角CNF因为AD为三角形ABC中的角平分线所以角BAD=角DAC因为MF‖AD所以角NFC=角DAC=角DAB=角

如图,点O是等边△ABC内一点,角ACB=110°,角BOC=α°.将三角形BOC绕C顺时针方向旋转60°得△ADC,连

∵OC=OD,且〈DCO=60°∴△DCO为等边三角形,∴〈ODC=60°,∵△NOC≌△CDA,∴〈BOC=〈ADC=α,α=360°-110°-〈AOC=250°-〈AOC,〈AOC=60°+〈A

如图,点O是等边△ABC内一点,角AOB=110°,角BOC=α°.将三角形BOC绕C顺时针方向旋转60°得△ADC,连

如果我图猜得正确的话:1)∵△ADC由△BOC旋转至,∴OC=CD,∠OCD=60°,∴△COD是等边三角形;2)此时∠ADO=∠ADC-∠ODC=150°-60°=90°,其他角不是特殊角,∴△AO