如图,点p是角AOB的边OA上的一点,请过点P画出OAOB的垂线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:30:52
作M关于OA的对称点M'作N关于OB的对称点N'连结M'N'分别交OA、OB于O、P连结MP,OP,NP,MN此时四边形MNOP边长最短
因为 OC=OD OE=OF 且三角形ODE与三角形OCF共角COD所以 三角形ODE与三角形OCF 全等则有 角OED=角OFC 角ODE=角OCF由 角ODE=角OCF 可得 角PDF = 角 P
(1)(2)所画图形如下所示;(3)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC.故答案为:直线OA,线段CP的长度,PH<PC<O
如图3作PE、PF分别⊥OA、OB(即P点到两边的距离)得PE=PF(角平分线上一点到两边的距离相等)且∠EOF=90°,又∵∠CPD=90°即相当于,绕P点将∠CPD逆时针旋转一个角度(图中90,笔
7CM,因为P1P2分别是P关于AOBO的对称点,所以又PM=P1MPN=P2N即P1P2就等于三角形PMN的周长,中学时代经常碰到得题--
解题思路:认真审题,仔细观察和分析题干中的已知条件.根据点到直线的距离的定义进行判断求解.解题过程:线段PN的长度表示点P到直线OB的距离.最终答案:略
证明:∵点P在∠AOB的角平分线OC上,PE⊥OB,PD⊥AO,∴PD=PE,∠DOP=∠EOP,∠PDO=∠PEO=90°,∴∠DPF=90°-∠DOP,∠EPF=90°-∠EOP,∴∠DPF=∠E
(1)因为E为∠AOB角平分线上一点又因为EC⊥OA,ED⊥OB利用角平分线定理可以得出EC=ED所以△DEC为等腰三角形所以∠EDC=∠ECD命题得证(2)OD=OC,证明如下:由于EC⊥OA,ED
证明:DF=EF.理由如下:∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,∴PD=PE,∠DPF=∠EPF.在△DPF与△EPF中,PD=PE∠DPF=∠EPFP
2∠COP=∠CPO所以OC=PC=4可以作PE垂直于OB,PE=PD=1/2PC
PC=PD过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.PC=PD过P分别作PE⊥OB于E
PC=PD过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.PC=PD过P分别作PE⊥OB于E
∵P是角AOB的角平分线OC上的一点,又∵PD⊥于OA,PE⊥于OB∴PD=PE,∠DOF=∠EOF∵∠PDO=∠PEO=90°∴OP=OP在Rt△POD和Rt△POE中PD=PE(已证){OP=OP
必须是PN啊,关键是你要弄清楚点到直线的距离是什么概念,我告诉你:点到直线的最短距离.什么最短?点到那条直线垂线段最短.
PN表示距离,看点与线的距离,就过这个点做该线的垂线.
答案是30°【若不知道怎么来的,等我一会,把图画好传上去】做点P关于OB的对称点P '做点P关于OA的对称点P''连接P'P''交OA与E,交
作法:1、连续OP; 2、以O为圆心,OP为半径作弧交OA于点C; 3、分别以P、C为圆心,OP为半径作弧相交于点D; 4、过点P、D作直线MN,则MN为所求.证明:(略)
必须时候PN啊,关键是你要弄清楚点到直线的距离是什么概念,我告诉你:点到直线的最短距离.什么最短?垂线!
∵PH⊥OA又∵垂线段最短∴PH<PC且PH<CO(美工不好,见谅)