如图,直线l经过圆o的圆心o,与圆o交于a,b两点,角aoc=30

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:32:03
如图,直线l经过圆o的圆心o,与圆o交于a,b两点,角aoc=30
21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB.点p时圆O上异于A,B的任意一点,

21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1

如图,在平面直角坐标系中,以坐标原点O为圆心,10为半径画圆,与X轴的负半轴交于点C,直线L垂直于CO,垂足为H,交圆O

  (1)∵OC⊥AB,∴AH=1/2AB=,  在RTΔOAH中,OA=10,AH=8  ∴OH=√(OA^2-AH^2)=6,∴A(-6,8)  又C(-10,0),设直线AC解析式为:Y=kx+

如图,点o为坐标原点,直线l经过抛物线C:y²=4x的焦点F.

二者相切抛物线:y^2=4x因此,焦点为F=(1,0)设A=(x0,y0)那么,圆的半径r=√[(x0-1)^2+(y0)^2]=√[(x0-1)^2+4x0]=(x0+1)因此,B=(1-r,0)=

如图,在平面直角坐标系中,以原点O为圆心做圆,半径为2,将直线y=x平移得到直线l,直线l与x轴的交点为P点,若直线l与

当直线与圆相切时则此时x最大,设切点为F,连FO即OP,在三角形中解得x最大为2倍根2则范围[0,2倍根2]

如图,圆O是△ABC的内切圆,在AB AC 边各取一点D E,使AD=AE,且DE连线恰好经过圆心O.

证明:连结OB,OC,因为∠ADE=∠AED,所以∠ADE=(180°-∠A)/2=90°-∠A/2,所以∠BDO=180°-∠ADE=90°+∠A/2,所以∠DBO+∠DOB=90°-∠A/2,因为

和圆有关如图,直线L经过圆O的圆心O,且与圆O交于A、B两点,点C在圆O上.且角AOC=30°,点P是直线L上的一个动点

一楼中,当CQ⊥OP时,QO是斜边,而QP是直角边,不可能有QO=QP二楼中,点P与点B重合时,点Q也与点P重合,此时QP退化成一个点,而QO是半径,也不可能相等我的解答如图所示:

如图,在平面直角坐标系中,以坐标原点O为圆心,10为半径画圆,与x轴的负半轴交于点C,直线l⊥CO垂足为H交圆O于AB两

⑴OC⊥AB,∴AH=1/2AB=8,在RTΔOAH中,OA=10,AH=8,∴OH=√(OA^2-AH^2)=6,∴A(-6,8),又C(-10,0),设直线AC解析式为:Y=kx+b,得方程组8=

如图,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直.看图,图有完整的题目

存在只需要满足众多条件中的一个即可再问:那个条件?能不能举个例子再答:嗯哼你的题我看不清呢只是我们当时期中考试的时候全班除了第一名之外全部都死在这个提上了我们班主任告诉我们存在就只满足众多条件中的一个

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

如图PA切圆0于点A,直线PC经过圆心O,交圆O于另一点B,OB=PB=1,OA绕点O逆时针方向旋转60°到OD,则PD

由PA是切线,OA⊥PA,OA=1/2OP(OA=OB=PB=1,OP=2)得:∠OPA=30°,那么∠AOP=60°由∠AOD=60°得:∠COD=60°做DM⊥OC,在Rt△DOM中:∠ODM=3

在圆O中,经过半径OA的外端L垂直OA,则圆心O到L的距离是多少?直线L和圆O有什么位置关系?

从题目的描述可以知道,L是园O的一条切线圆心到L的距离就是园O的半径

圆o的半径是3,直线l与圆o有两个公共点,则圆心o到直线的距离d的取值范围

有两个交点,保证圆心到直线的距离小于半径长,即d的取值范围为:0=

如图,圆心o的半径为2,点o到直线l的距离为3,点p是直线l上的一个动点,pb切圆心o于点b,则PB

是求PB的最小值么?分析:因为PB为切线,所以△OPB是Rt△.因为OB为定值,所以当OP最小时,PB最小.根据垂线段最短,知OP′=3时P′B′最小.运用勾股定理求解即可.作OP′⊥l于P′点,则O

已知:如图,直线L与圆O相交于A、B两点.(1)若点O到直线L的距离为3,AB=8,求圆O的半径; (2)若圆O的半

设OE垂直于AB于点E所以E为AB中点又因为AB=8所以AE=4所以在RT三解形OAE中由勾股定理OA的平方=AE的平方+OE的平方OE=3所以OA=5所以半径=5一共有3个点.直线把圆分为两部分,一

如下页图是一个隧道横截面,它的形状是以点o为圆心的圆的一部分,如果M是⊙o中的弦CD的中点,EM经过圆心O交于点E,并且

设半径是r连接OC则OC=rOE=r所以OM=6-rM是CD中点所以OM垂直CD且CM=2所以由勾股定理r²=2²+(6-r)²r²=4+36-12r+r

如图16,在以O为圆心的两个同心圆中,AB经过圆心O

(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC

已知圆心为C的圆经过点A(-1,1)和B(-2,-2),且圆心在直线L:x+y-1=o上,求

设圆心坐标(x,y),x+y-1=0,AB中点为o(-3/2,-1/2)kAB*koc=-1,可以计算出圆心坐标

直线l过圆O的圆心O,点C在圆O上,且角AOC=30度,点P是

有两个,其实只要还是以O为圆心,原来的两倍为半径做圆,和l相交的两个点就是所求的点了.因为AOC是30度,也就是圆心角三十度,OA=OC.三角形的两个底角都是75度,ACO也就是75度,因为P是在同一

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60